类欧几里得学习小计

现在才会类欧我好菜啊,而且是简单的部分

特殊类欧

  • L ≤ v x % M ≤ R L\leq vx\%M\leq R Lvx%MR的最小的 x x x

  • f ( M , v , L , R ) f(M,v,L,R) f(M,v,L,R)为上面的答案 ( 0 < v < M , 0 ≤ L , R < M ) (0<v<M,0\le L,R <M) (0<v<M,0L,R<M)

  • 按照一般的套路,将特殊的情况判掉,最后再缩减范围即可。

  • 首先保证 0 ≤ L ≤ R < M 0\le L\le R<M 0LR<M,否则如果 L ≤ 0 ≤ R L\le 0\le R L0R x = 0 x=0 x=0

  • 然后判断无解的情况

    • 因为所有 v x % M vx\%M vx%M一定可以表示成 k ∗ g c d ( M , v ) k*gcd(M,v) kgcd(M,v),所以要求:
    • ⌊ L − 1 ( M , v ) ⌋ + 1 ≤ ⌊ R ( M , v ) ⌋ \left \lfloor \frac{L-1}{(M,v)} \right \rfloor+1\le\left \lfloor \frac{R}{(M,v)} \right \rfloor (M,v)L1+1(M,v)R
  • 最小解

    • 如果 ⌊ L − 1 v ⌋ + 1 ≤ ⌊ R v ⌋ \left \lfloor \frac{L-1}{v} \right \rfloor+1 \le\left \lfloor \frac{R}{v} \right \rfloor vL1+1vR
    • 显然 x = ⌊ L − 1 v ⌋ + 1 x=\left \lfloor \frac{L-1}{v} \right \rfloor+1 x=vL1+1为最小的解。
    • 否则就满足 L % v ≤ R % v L\%v\le R\%v L%vR%v
  • 修改 v v v保证时间复杂度

    • 如果 2 v ≥ M 2v\ge M 2vM,不妨全部取一个负数。
    • f ( M , v , L , R ) = f ( M , M − v , M − R , M − L ) f(M,v,L,R)=f(M,M-v,M-R,M-L) f(M,v,L,R)=f(M,Mv,MR,ML)
    • 那么保证了 v ≤ M 2 v\le\frac{M}{2} v2M
  • 那么现在有 L ≤ v x % M ≤ R L\le vx\%M \le R Lvx%MR

  • L ≤ v x − p M ≤ R L\le vx-pM\le R LvxpMR,左右 % v \%v %v得到:

  • L % v ≤ ( v − M % v ) p ≤ R % v L\%v\le (v-M\%v)p\le R\%v L%v(vM%v)pR%v,在 % v \%v %v下要求一个最小的 p p p,然后就可以凑一个 x x x使得满足原问题了。

  • 这个也是一个子问题 p = f ( v , v − M % v , L % v , R % v ) p=f(v,v-M\%v,L\%v,R\%v) p=f(v,vM%v,L%v,R%v),由于上面对 v v v保证 v ≤ M 2 v\le\frac{M}{2} v2M,所以是 O ( l o g ) O(log) O(log)的。

  • x = ⌊ L + p M − 1 v ⌋ + 1 x=\left \lfloor \frac{L+pM-1}{v} \right \rfloor+1 x=vL+pM1+1

飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新和实践能力,尤其是在嵌入式系统、自动控制和机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向和位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波和滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度和方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器和串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序和主循环等。理解和优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试和优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别和解决。 团队协作与版本控制:在项目开发过程中,团队协作和版本控制工具(如Git)的应用不可或缺,能够保
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值