1
≤
a
,
b
≤
1
e
15
,
0
≤
a
−
b
≤
1
e
4
,
1
≤
k
≤
9
1\le a,b\le 1e15,0 \le a-b\le1e4,1\le k \le 9
1≤a,b≤1e15,0≤a−b≤1e4,1≤k≤9
Solution
首先我们先考虑
a
=
b
a=b
a=b的情况,不难发现对于一种小A赢的方案数,取反就对应小A输的方案数,所以只要在所有方案中减去平的再除以二即可。
考虑扩展到
a
>
b
a>b
a>b的情况,那么小A输或平的情况取反之后对应小A赢,还有一些情况小A取不取反都赢,算出后者,即可算出答案。即
W
a
>
W
b
,
A
−
W
a
>
B
−
W
b
W_a>W_b,A-W_a>B-W_b
Wa>Wb,A−Wa>B−Wb,则
A
−
B
>
W
a
−
W
b
A-B>W_a-W_b
A−B>Wa−Wb。
这个部分的方案数即为
∑
i
=
1
A
−
B
−
1
∑
j
=
1
b
C
a
i
+
j
C
b
j
=
∑
i
=
1
A
−
B
−
1
∑
j
=
1
b
C
a
i
+
j
C
b
b
−
j
=
∑
i
=
1
A
−
B
−
1
C
a
+
b
i
+
b
\sum_{i=1}^{A-B-1}\sum_{j=1}^bC_{a}^{i+j}C_b^j=\sum_{i=1}^{A-B-1}\sum_{j=1}^bC_{a}^{i+j}C_b^{b-j}=\sum_{i=1}^{A-B-1}C_{a+b}^{i+b}
∑i=1A−B−1∑j=1bCai+jCbj=∑i=1A−B−1∑j=1bCai+jCbb−j=∑i=1A−B−1Ca+bi+b。
然后套用扩展lucas即可。
注意除以二在模1e9的情况下不好计算,可以考虑
∑
i
=
1
A
−
B
−
1
C
a
+
b
i
+
b
\sum_{i=1}^{A-B-1}C_{a+b}^{i+b}
∑i=1A−B−1Ca+bi+b利用组合数的对称性算一半,
C
2
a
a
=
2
C
2
a
−
1
a
C_{2a}^a=2C_{2a-1}^a
C2aa=2C2a−1a即可。