CF573E Bear and Bowling

这篇博客介绍了如何使用平衡树数据结构解决寻找数组中具有最大和的子序列问题,提出了一种时间复杂度为O(n log n)的解决方案。通过二分查找和区间更新,实现了动态维护最大子序列和,避免了平方时间复杂度的简单解法。文章详细解释了算法的思路和代码实现,包括平衡树的插入、查询和区间修改操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CF573E Bear and Bowling

  • 给定一个长度为 n的序列 a 1 … n a_{1\dots n} a1n
  • 你要求一个 a a a的子序列 b 1 … m b_{1\dots m} b1m(可以为空),使得 ∑ i = 1 m i b i \sum_{i=1}^m ib_i i=1mibi的值最大。
  • n ≤ 1 0 5 , ∣ a i ∣ ≤ 1 0 7 n\le 10^5,|a_i|\le 10^7 n105,ai107

Solution

  • 不同于题解的 n n   l o g   n n\sqrt n\ log\ n nn  log n,这里介绍一种 n   l o g   n n\ log\ n n log n的做法。
  • 首先把简单的 n 2 n^2 n2写出来, f j = m a x ( f j , f j − 1 + j ∗ a i ) f_j=max(f_j,f_{j-1}+j*a_i) fj=max(fj,fj1+jai)
  • 那么存在一个分界点 k k k,对于 j ≥ k j\ge k jk都有 f j = f j − 1 + j ∗ a i f_j=f_{j-1}+j*a_i fj=fj1+jai
  • 既然如此写一个平衡树,做一个插入、查询和区间修改即可,需要注意tag(我打了三个)。二分更新的分界点。
  • 由于只会splay所以就写了简单的两个log的二分加查询,如果能做到平衡树上二分就可以一个log。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 100005
#define ll long long 
using namespace std;

int n,i,j,k,a[maxn];
struct node{
	int s[2],fa;
	ll tagk,tagb,f,id,tagc;
} t[maxn];

int get(int x){return t[t[x].fa].s[1]==x;}
void comb(int x,int y){
	t[x].tagk+=t[y].tagk;
	t[x].tagb+=t[y].tagb+t[y].tagk*t[x].tagc;
	t[x].tagc+=t[y].tagc;
}

void downtag(int x){
	if (!t[x].tagk&&!t[x].tagb&&!t[x].tagc) return;
	t[x].f+=t[x].tagk*t[x].id+t[x].tagb;
	t[x].id+=t[x].tagc;
	if (t[x].s[0]) comb(t[x].s[0],x);
	if (t[x].s[1]) comb(t[x].s[1],x);
	t[x].tagk=t[x].tagb=t[x].tagc=0;
}

void remove(int x,int y){
	static int d[maxn];
	while (x!=y) d[++d[0]]=x,x=t[x].fa;d[++d[0]]=y;
	while (d[0]) downtag(d[d[0]--]);
}

void rotate(int x){
	int y=t[x].fa,c=get(x);
	t[y].s[c]=t[x].s[c^1];
	if (t[y].s[c]) t[t[y].s[c]].fa=y;
	if (y) t[t[y].fa].s[get(y)]=x;
	t[x].fa=t[y].fa,t[y].fa=x,t[x].s[c^1]=y;
}

void splay(int x,int y){
	remove(x,y);
	while (t[x].fa!=y){
		int z=t[x].fa;
		if (t[z].fa!=y){
			if (get(z)==get(x)) rotate(z);
			else rotate(x);
		}
		rotate(x);
	}
}

int find(int x,int i){
	downtag(x);
	if (t[x].id==i) return x;
	if (t[x].id<i) return find(t[x].s[1],i);
	else return find(t[x].s[0],i);
}

ll getv(int k){
	int x=find(0,k); splay(x,0);
	return t[x].f;
}

ll getans(int x){
	downtag(x);ll ans=0;
	if (x) ans=max(ans,t[x].f);
	if (t[x].s[0]) ans=max(ans,getans(t[x].s[0]));
	if (t[x].s[1]) ans=max(ans,getans(t[x].s[1]));
	return ans;
}

int main(){
	freopen("ceshi.in","r",stdin);
	freopen("ceshi1.out","w",stdout);
	scanf("%d",&n);
	for(i=1;i<=n;i++) scanf("%d",&a[i]);
	t[1].id=0,t[1].fa=0,t[0].s[1]=1,t[0].id=-1;
	for(i=1;i<=n;i++){
		int l=0,r=i-2,mid,mi=i-1;
		while (l<=r){
			mid=(l+r)>>1;
			if (getv(mid)+1ll*(mid+1)*a[i]>=getv(mid+1))
				mi=mid,r=mid-1; 
			else l=mid+1;
		}
		if (mi==i-1){
			k=find(0,i-1),splay(k,0);
			t[k].s[1]=i+1,t[i+1].fa=k;
			t[i+1].f=t[k].f+(t[k].id+1)*a[i];
			t[i+1].id=i;
		} else {
			k=find(0,mi),splay(k,0);
			j=find(0,mi+1),splay(j,k);
			t[j].s[0]=i+1,t[i+1].fa=j;
			t[i+1].f=t[k].f+(t[k].id+1)*a[i],t[i+1].id=mi+1;
			splay(i+1,0),k=t[i+1].s[1];
			downtag(k);
			t[k].tagk=a[i],t[k].tagb=a[i],t[k].tagc=1;
		}
	}
	printf("%lld",getans(0));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值