CF1442D Sum

Description

  • 给你 n n n个栈,你需要对于每一个栈,从前往后选择若干个,栈中每一个元素有一个贡献,问选择 k k k个的最大贡献是多少。
  • n ≤ 3000 , ∑ c ≤ 1 e 6 , k ≤ 3000 n\le3000,\sum c\le1e6,k\le3000 n3000,c1e6,k3000

Solution

  • 首先考虑单调性,不可能同时有两个栈没有选择完,因为如果有 a i > b j a_i>b_j ai>bj,一定有 a i + 1 > b j − 1 a_{i+1}>b_{j-1} ai+1>bj1,这样我们就可以把所有的 b b b换成 a a a
  • 因此就可以DP了,枚举哪一个没有选择完,然后处理一个前缀DP和后缀DP。
  • 但是这样合并的时间是不行的。
  • 考虑分治,从 [ l , r ] [l,r] [l,r] [ l , m i d ] [l,mid] [l,mid],就 O ( ( r − m i d ) k ) O((r-mid)k) O((rmid)k) [ m i d + 1 , r ] [mid+1,r] [mid+1,r]加入DP即可,向右类似。
  • 最后枚举选择 c c c个,那么就用 k − c k-c kc计算答案。

  • 这样可以知道一个固定的 k k k的答案,但是如果是 1 − k 1-k 1k的答案呢?
  • 也许可以用这个转移的单调性来强行从前往后维护?
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
#define maxn 3005
#define ll long long 
using namespace std;

int n,m,i,j,k,c[maxn]; vector<ll> a[maxn];
ll f[20][maxn],ans;
ll max(ll a,ll b){return (a>b)?a:b;}

void merge(int l,int r,int d){
	if (l==r){
		for(int i=m;i>=0;i--) if (i+c[l]>=m)
			ans=max(ans,f[d][i]+a[l][m-i]);
		return;
	}
	int mid=(l+r)>>1;
	memcpy(f[d+1],f[d],sizeof(f[d]));
	for(int i=mid+1;i<=r;i++) {
		if (c[i]<=m) for(int j=max(0,m-c[i]);j>=0;j--)
			f[d+1][j+c[i]]=max(f[d+1][j+c[i]],f[d+1][j]+a[i][c[i]]);
	}
	merge(l,mid,d+1);
	memcpy(f[d+1],f[d],sizeof(f[d]));
	for(int i=l;i<=mid;i++) {
		if (c[i]<=m) for(int j=max(0,m-c[i]);j>=0;j--) 
			f[d+1][j+c[i]]=max(f[d+1][j+c[i]],f[d+1][j]+a[i][c[i]]);
	}
	merge(mid+1,r,d+1);
}

int main(){
	freopen("ceshi.in","r",stdin);
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++) {
		scanf("%d",&c[i]),a[i].push_back(0);
		for(j=1;j<=c[i];j++) {
			scanf("%d",&k),a[i].push_back(k);
			a[i][j]+=a[i][j-1];
		}
	}
	merge(1,n,0);
	printf("%lld\n",ans);
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值