CF1439D INOI Final Contests

Description

Solution

  • 首先两个段在不相交的时候是互相独立的,可以直接用 f n , g n f_n,g_n fn,gn表示长度 n n n的方案数以及答案的和,转移要么是新加点在左边或右边,要么合并两个段,可以 O ( n 2 ) O(n^2) O(n2)简单计算。
  • 然后直接 O ( n 3 ) O(n^3) O(n3)可以把段合并在一起,这样总的时间复杂度就是 O ( n 3 ) O(n^3) O(n3)的了。
  • 实际上可以做到 O ( n 2 ) O(n^2) O(n2):考虑后面的 n 3 n^3 n3的卷积,我们用生成函数表示出来:
  • f ( x ) , g ( x ) f(x),g(x) f(x),g(x) f n , g n f_n,g_n fn,gn的EGF, F ( x ) = f ( x ) + g ( x ) y F(x)=f(x)+g(x)y F(x)=f(x)+g(x)y

∑ k ≥ 0 F k ( x ) u k ( 1 − u ) k + 1 [ x m ] [ u n + 1 − m ] = 1 1 − u ⋅ 1 1 − F ( x ) u 1 − u = 1 1 − u ( F ( x ) + 1 ) = ∑ k ≥ 0 u i ( F ( x ) + 1 ) i [ x m ] [ u n + 1 − m ] = ( F ( x ) + 1 ) n + 1 − m [ x m ] = ( f ( x ) + g ( x ) y + 1 ) n + 1 − m [ x m ] [ y ] = ( n + 1 − m ) g ( x ) ( f ( x ) + 1 ) n − m [ x m ] \sum_{k\ge0}F^k(x)\frac{u^k}{(1-u)^{k+1}}[x^m][u^{n+1-m}]\\ =\frac{1}{1-u}\cdot\frac{1}{1-\frac{F(x)u}{1-u}}=\frac{1}{1-u(F(x)+1)}=\sum_{k\ge0}u^i(F(x)+1)^i[x^m][u^{n+1-m}]\\ =(F(x)+1)^{n+1-m}[x^m]\\ =(f(x)+g(x)y+1)^{n+1-m}[x^m][y]\\ =(n+1-m)g(x)(f(x)+1)^{n-m}[x^m] k0Fk(x)(1u)k+1uk[xm][un+1m]=1u111uF(x)u1=1u(F(x)+1)1=k0ui(F(x)+1)i[xm][un+1m]=(F(x)+1)n+1m[xm]=(f(x)+g(x)y+1)n+1m[xm][y]=(n+1m)g(x)(f(x)+1)nm[xm]

  • ( f ( x ) + 1 ) n − m (f(x)+1)^{n-m} (f(x)+1)nm用一个 n 2 n^2 n2的多项式快速幂(求导,递推)即可做出。

  • 还可以继续优化,上面的求快速幂可以多项式exp, f ( x ) f(x) f(x)通过推式子(OEIS?)可以得到 f n = 2 n ( n + 1 ) n − 1 f_n=2^n(n+1)^{n-1} fn=2n(n+1)n1 g ( x ) g(x) g(x)可以用分治NTT做到 n   l o g 2 n n\ log^2n n log2n的复杂度,或者 g ( x ) g(x) g(x)也可以推出一个一阶微分方程套用公式用多项式exp求解?可以做到 n   l o g   n n\ log\ n n log n

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 505
#define ll long long 
using namespace std;

int n,m,mo,i,j,k;
ll f[maxn],g[maxn],C[maxn][maxn],ans;
ll f0[maxn][maxn],g0[maxn][maxn];
ll P(int n,int m){return C[n+m-1][m-1];}

int main(){
	freopen("ceshi.in","r",stdin);
	scanf("%d%d%d",&n,&m,&mo);
	for(C[0][0]=1,i=1;i<=n+1;i++) for(C[i][0]=1,j=1;j<=i;j++)
		C[i][j]=(C[i-1][j]+C[i-1][j-1])%mo;
	f[0]=1,g[0]=0,f[1]=2,g[1]=0;
	for(i=2;i<=n;i++) {
		(f[i]+=f[i-1]*(i+1)*2)%=mo;
		(g[i]+=f[i-1]*i%mo*(i-1))%=mo;
		(g[i]+=g[i-1]*(i+1)*2)%=mo;
		for(j=1;j+1<i;j++){ 
			k=i-j-1;
			(f[i]+=f[j]*f[k]%mo*(j+k+2)%mo*C[j+k][k])%=mo;
			(g[i]+=(g[j]*f[k]+g[k]*f[j])%mo*(j+k+2)%mo*C[j+k][k])%=mo;
			(g[i]+=f[j]*f[k]%mo*C[j+k][k]%mo*((1ll*(j+1)*j/2+1ll*(k+1)*k/2)%mo))%=mo;
		}
	}
	f0[0][0]=1,g0[0][0]=0;
	for(i=0;i<=m;i++) for(j=0;j<=m;j++) if (f0[i][j]){
		for(k=1;j+k<=m;k++){
			(f0[i+1][j+k]+=f0[i][j]*f[k]%mo*C[j+k][k])%=mo;
			(g0[i+1][j+k]+=(g0[i][j]*f[k]+f0[i][j]*g[k])%mo*C[j+k][k])%=mo;
		}
	}
	for(i=1;i<=m;i++) if (n+1-m-i>=0)
		(ans+=g0[i][m]*P(n+1-m-i,i+1))%=mo;
	printf("%lld\n",ans);
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值