LOJ#3385/JZOJ6908. 「COCI 2020.11」Svjetlo

Description

Solution

  • 考虑最后的路径是什么样子,首先每一条边最多经过四次,即来回两次,因为我们可以通过递归解决一条边下面的子树,然后再根据这个点当前的奇偶性,考虑经过这条边两次还是四次(即横跳一次还是两次)。
  • 有了这个简单的思路,我们就可以直接树形DP了,一条路径把它拆分到每一条边上计算,记录 f [ x ] [ 0 / 1 / 2 ] [ 0 / 1 ] f[x][0/1/2][0/1] f[x][0/1/2][0/1]表示 x x x的子树内,有 0 / 1 / 2 0/1/2 0/1/2个路径端点, x x x的灯是 0 / 1 0/1 0/1,形成了一个以 x x x开头,以 x x x结尾的操作序列,直接把它跟父亲的操作序列相接,根据此前 x x x灯的状态决定这条边横跳一次还是横跳两次,转移一下即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 500005
using namespace std;

int n,i,j,k,a[maxn];
int em,e[maxn*2],nx[maxn*2],ls[maxn];
int f[maxn][3][2],g[3][2],inf;

void read(int &x){
	x=0; char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar());
	for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
}

void insert(int x,int y){
	em++; e[em]=y; nx[em]=ls[x]; ls[x]=em;
	em++; e[em]=x; nx[em]=ls[y]; ls[y]=em;
}

int sz[maxn],cnt;
void Min(int &a,int b){a=(a<b)?a:b;}
void dfs(int x,int p){
	sz[x]=a[x]^1;
	f[x][0][a[x]^1]=f[x][1][a[x]^1]=f[x][2][a[x]^1]=1;
	for(int i=ls[x];i;i=nx[i]) if (e[i]!=p){
		int y=e[i]; dfs(y,x),sz[x]+=sz[y];
		if (sz[y]){
			memset(g,127,sizeof(g));
			for(int j=0;j<2;j++) for(int k=0;k<2;k++) for(int t1=0;t1<3;t1++) for(int t2=0;t1+t2<3;t2++)
				if (f[x][t1][j]<1e9&&f[y][t2][k]<1e9){
					if (t2==1){
						if (k==1) 
							Min(g[t1+t2][j],f[x][t1][j]+f[y][t2][k]);
						else Min(g[t1+t2][j^1],f[x][t1][j]+f[y][t2][k]+2);
					} else
					if (t2==2) 
						Min(g[t1+t2][j^k],f[x][t1][j]+f[y][t2][k]+3-(k^1)*2);
					else 
						Min(g[t1+t2][j^k],f[x][t1][j]+f[y][t2][k]+3-k*2);
				}
			memcpy(f[x],g,sizeof(g));
		}
	}
	if (sz[x]==cnt){
		printf("%d\n",f[x][2][1]);
		exit(0);
	}
}

int main(){
	read(n); char ch=getchar();
	while (ch!='0'&&ch!='1') ch=getchar();
	for(i=1;i<=n;i++) a[i]=ch-'0',ch=getchar(),cnt+=a[i]^1;
	for(i=1;i<n;i++) read(j),read(k),insert(j,k);
	memset(f,127,sizeof(f)),inf=f[0][0][0];
	dfs(1,0);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值