CF1450E Capitalism

本文解析了一道差分约束的裸题,介绍了如何通过Floyd算法判断奇环的存在,并利用差分约束来求解二分图的问题。文章详细解释了如何将au=av+1转化为不等式的处理方式,并给出了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Solution

  • 差分约束的裸题,太久没有做差分约束导致我完全忘记了这个东西。
  • 首先如果有奇环显然不行,因此这是一个二分图。
  • a u = a v + 1 a_u=a_v+1 au=av+1可以写成 a u ≤ a v + 1 , a u ≥ a v + 1 a_u\le a_v+1,a_u\ge a_v+1 auav+1,auav+1
  • ∣ a u − a v ∣ = 1 |a_u-a_v|=1 auav=1可以写成 a v − 1 ≤ a u ≤ a v + 1 a_v-1\le a_u \le a_v+1 av1auav+1,又因为二分图的限制,一定可以满足上下界之一,所以不需要判断不相同的情况。
  • floyd判负环——做完之后判断一下是否存在 d i s u , u < 0 dis_{u,u}<0 disu,u<0
  • 由于 a u − a v ≤ d i s u , v a_u-a_v\le dis_{u,v} auavdisu,v,因此找到最大 d i s u , v dis_{u,v} disu,v然后以 u u u作为起点即可
  • O ( n 3 ) O(n^3) O(n3)
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#define maxn 205
#define maxm 2005
using namespace std;

int n,m,i,j,k,f[maxn][maxn],col[maxn],vis[maxn],ans,id;

void dfs(int x){
	vis[x]=1;
	for(int i=1;i<=n;i++) if (f[x][i]<=n){
		if (!vis[i]) col[i]=col[x]^1,dfs(i); else 
		if (col[i]==col[x]) 
			printf("NO\n"),exit(0);
	}
}

int main(){
	freopen("ceshi.in","r",stdin);
	scanf("%d%d",&n,&m);
	memset(f,127,sizeof(f));
	for(i=1;i<=m;i++){
		int x,y; scanf("%d%d%d",&x,&y,&k);
		if (k) f[x][y]=1,f[y][x]=-1;
		else f[x][y]=f[y][x]=1;
	}
	memset(vis,0,sizeof(vis));
	dfs(1);
	for(i=1;i<=n;i++) f[i][i]=0;
	for(k=1;k<=n;k++) for(i=1;i<=n;i++) for(j=1;j<=n;j++)
		if (f[i][k]<=1e9&&f[k][j]<=1e9)
			f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
	for(i=1;i<=n;i++) if (f[i][i]<0) printf("NO\n"),exit(0);
	id=1;
	for(i=1;i<=n;i++) for(j=1;j<=n;j++) if (abs(f[i][j])>ans)
		ans=abs(f[i][j]),id=i;
	printf("YES\n%d\n",ans);
	for(i=1;i<=n;i++) printf("%d ",n+f[id][i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值