arc118简要题解

arc118简要题解

  • A :先二分答案,然后再二分交税之后不超过答案的最大整数,判断即可。

  • B:可以二分 ∣ B i N − A i M ∣ |B_iN-A_iM| BiNAiM,然后可以得到 A i A_i Ai的范围,判断一下是否能够构成 M M M即可,实际上还可以考虑直接对于最优的情况 A i A_i Ai取小数的上取整或下取整中答案最小的那个,然后选择影响最小的进行调整即可。

  • C:想了很久阴间构造,然后程序测试一下才发现2,3,5中任意两个的倍数大概有2600个可以过了。

  • D:显然先找原根,假设 a = g x , b = g y a=g^x,b=g^y a=gx,b=gy,那么要用 A x + B y Ax+By Ax+By得到 [ 0 , P − 2 ] [0,P-2] [0,P2]中的所有数,首先 g c d ( x , y , P − 1 ) = 1 gcd(x,y,P-1)=1 gcd(x,y,P1)=1,然后考虑从 g 0 g^0 g0开始,每一次加减 x , y x,y x,y,设 a , b a,b a,b的循环节为 u , v u,v u,v,注意到不存在 u , v u,v u,v同时是奇数(否则不妨设 P > 2 P>2 P>2,那么 ( P − 1 ) / u , ( P − 1 ) / v (P-1)/u,(P-1)/v (P1)/u,(P1)/v都是偶数,不能组合所有数),不妨设 u u u为偶数, v ′ = ( P − 1 ) / u v'=(P-1)/u v=(P1)/u,可以发现 a i b j ( i < u , j < v ′ ) a^ib^j(i<u,j<v') aibj(i<u,j<v)恰好对应了 [ 1 , P − 1 ] [1,P-1] [1,P1]内的所有数,由于 u u u是偶数,不妨将其看成一个 u ∗ v ′ u*v' uv的矩形,那么绕一下就可以构造出一个哈密顿路径了。

  • 简单证明一下不会重复,考虑对于 g C g^C gC A x + B y = C Ax+By=C Ax+By=C,且 A < u A<u A<u,那么下一组解为 ( A + y ) x + ( B − x ) y = C (A+y)x+(B-x)y=C (A+y)x+(Bx)y=C,在 u ∗ v ′ u*v' uv的矩形之外。

  • E:考虑容斥,直接设 f [ i ] [ j ] [ k ] [ 0 / 1 ] [ 0 / 1 ] f[i][j][k][0/1][0/1] f[i][j][k][0/1][0/1]表示走到 ( i , j ) (i,j) (i,j),前面未确定的位置一共放了 k k k个,当前行、列是否已经放了,钦定下一个如果为障碍则乘-1的容斥系数,转移即可。(如果不用容斥状态类似,但是讨论更加复杂)。

  • F:考虑从后往前,设 f i ( x ) f_i(x) fi(x)表示当前开头为 x x x,后面不超过 M M M的方案数,转移是 f ′ ( x ) = ∑ y ≥ a x f ( y ) f'(x)=\sum_{y\ge ax}f(y) f(x)=yaxf(y),是后缀和的形式,可以直接插值求出任意前缀和,再差分求出新的 f ( x ) f(x) f(x)的点值,最后的结果是一个 n + 1 n+1 n+1次多项式,由于只需要对 a > 1 a>1 a>1的部分用 O ( n ) O(n) O(n)求一个新的点值,对 a = 1 a=1 a=1可以 O ( 1 ) O(1) O(1)求新的点值,因此复杂度 O ( n 2 l o g   M ) O(n^2log\ M) O(n2log M)。注意当前函数超出去的部分不用管,只需要保证定义域内的合法即可,以及一开始就是一个 n + 1 n+1 n+1次多项式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值