数论
文章平均质量分 63
YiPeng_Deng
这个作者很懒,什么都没留下…
展开
-
计蒜客决赛Day2 T2 类斐波拉契数据分析
Description传送门Solution关键在于发现结论,以及简单的反演。fib数列:fn=kfn−1+fn−2f_n=kf_{n-1}+f_{n-2}fn=kfn−1+fn−2满足fx+y=fx−1fy+fxfy+1f_{x+y}=f_{x-1}f_y+f_xf_{y+1}fx+y=fx−1fy+fxfy+1,转移矩阵为An=[[fn−1,fn],[fn,fn+1]]A^n=[[f_{n-1},f_n],[f_{n},f_{n+1}]]An=[[fn−1,fn]原创 2021-06-17 16:28:13 · 170 阅读 · 0 评论 -
模板:pollard_rho
需要注意mr筛的次数稍微有点大,尽量保证正确性,sd要赋初值。ll mul(ll x, ll y, ll p){ ll t=(x*y-(ll)((long double)x/p*y)*p)%p; if (t<0) return t+p; return t;}ull sd;ll rd(){sd^=sd>>13,sd^=sd<<7,sd^=sd>>23;return sd>>1;}ll gcd(ll x,ll y){return (x%y==.原创 2021-04-26 14:52:21 · 182 阅读 · 0 评论 -
arc111E Simple Math 3
Description传送门Solution如果i(B−C)+1≥Di(B-C)+1\ge Di(B−C)+1≥D就一定有,那么接下来要求∑i=1lim[Ci+AD−Bi+A−1D=1]=∑i=1limCi+AD−Bi+A−1D\sum_{i=1}^{lim}[\frac{Ci+A}{D}-\frac{Bi+A-1}{D}=1]\\=\sum_{i=1}^{lim}\frac{Ci+A}{D}-\frac{Bi+A-1}{D}i=1∑lim[DCi+A−DBi+A−1=1]=i=1原创 2021-01-10 20:48:18 · 319 阅读 · 0 评论 -
JZOJ6912. 【2020.12.01提高组模拟】数论(math)
Descriptionn,m≤1e7n,m\le1e7n,m≤1e7Solution后面那个互质数之和由于对称性可以得到是ϕ(n)n/2\phi(n)n/2ϕ(n)n/2,需要特判n=1n=1n=1然后把ϕ(ij)\phi(ij)ϕ(ij)拆成ϕ(i)ϕ(j)(i,j)ϕ((i,j))\phi(i)\phi(j)\frac{(i,j)}{\phi((i,j))}ϕ(i)ϕ(j)ϕ((i,j))(i,j),相当于是一个容斥掉1p−1\frac{1}{p-1}p−11然后直接枚举(i,j)(i原创 2020-12-01 21:37:48 · 311 阅读 · 0 评论 -
【扩展lucas】LOJ#2023. 「AHOI / HNOI2017」抛硬币
Description抛硬币,小A投aaa次,小B投bbb次,求小A正面次数多于小B正面次数的方案数。1≤a,b≤1e15,0≤a−b≤1e4,1≤k≤91\le a,b\le 1e15,0 \le a-b\le1e4,1\le k \le 91≤a,b≤1e15,0≤a−b≤1e4,1≤k≤9Solution首先我们先考虑a=ba=ba=b的情况,不难发现对于一种小A赢的方案数,取反就对应小A输的方案数,所以只要在所有方案中减去平的再除以二即可。考虑扩展到a>ba>ba>原创 2020-08-09 08:13:00 · 300 阅读 · 0 评论 -
JZOJ6782.【NOI2020.08.06模拟】wlwl
Descriptionn≤1e5,p≤1e18n\le1e5,p\le1e18n≤1e5,p≤1e18Solution跟昨天的WC T2用同样的套路来转化??!可惜没有提前做到这场模拟赛,血亏。简单的数论都不太熟练,做同余问题连智商都没有了。首先假设ggg为原根,有gx=ag^x=agx=a,设aord(a)=1a^{ord(a)}=1aord(a)=1,那么gx∗ord(a)=1g^{x*ord(a)}=1gx∗ord(a)=1,所以(p−1)∣x∗ord(a)(p-1)|x*ord(a原创 2020-08-08 09:06:21 · 259 阅读 · 0 评论 -
【powerful number】JZOJ6785.【NOI2020.08.07模拟】T3(remapping)
Description若x=∏pkx=\prod p^kx=∏pk,则f(x)=2∑kf(x)=2^{\sum k}f(x)=2∑k,求∑i=1nf(i)\sum_{i=1}^nf(i)∑i=1nf(i)。n<=1e14n<=1e14n<=1e14Solution首先f(x)f(x)f(x)是一个积性函数,我们考虑将fff卷两次μ\muμ。u=(f∗μ)∗μu=(f*\mu)*\muu=(f∗μ)∗μ(狄利克雷卷积),展开后不难发现uuu只在powerful number原创 2020-08-08 08:28:32 · 255 阅读 · 0 评论 -
类欧几里得学习小计
现在才会类欧我好菜啊,而且是简单的部分特殊类欧求L≤vx%M≤RL\leq vx\%M\leq RL≤vx%M≤R的最小的xxx。记f(M,v,L,R)f(M,v,L,R)f(M,v,L,R)为上面的答案。按照一般的套路,将特殊的情况判掉,最后再缩减范围即可。首先保证0≤L≤R<M0\le L\le R<M0≤L≤R<M。然后判断无解的情况因为所有vx%Mvx\%Mvx%M一定可以表示成k∗gcd(M,v)k*gcd(M,v)k∗gcd(M,v),所以要原创 2020-07-27 15:22:49 · 177 阅读 · 2 评论 -
二次剩余学习小计
二次剩余x2≡n (mod p)x^2\equiv n\ (mod\ p)x2≡n (mod p),ppp是奇素数。如果存在一个nnn满足以上方程有解,那么就称nnn是ppp的一个二次剩余。判断勒让德符号(pn)=np−12(^{n}_{p})=n^{\frac{p-1}{2}}(pn)=n2p−1(pn)=1(^{n}_{p})=1(pn)=1:是二次剩余。因为如果是二次剩余的话,存在n=n12\sqrt{n}=n^{\frac{1}{2}}原创 2020-05-25 20:22:03 · 268 阅读 · 0 评论 -
【简单计数知识2】JZOJ6405. 【NOIP2019模拟11.04】c
Descriptionn<=1e6,m<1e9+7n<=1e6,m<1e9+7n<=1e6,m<1e9+7Solution刚开始看到矩阵求逆后发现连裸的矩阵求逆我都不会(其实我去年应该是学过的。。。),只会一发n6的暴力对n2个点进行高斯消元。实际上,矩阵求逆有一种很好做的n3高斯消元。对于矩阵AAA,将它变为单元矩阵III,同时根据AAA的操作...原创 2019-11-06 22:25:30 · 199 阅读 · 0 评论 -
反演学习小计
参考资料炫酷反演魔术,打开了我新世界的大门,原来这些反演都是一个东西!!!二项式反演f(n)=∑i=0nCnig(i)f(n)=\sum_{i=0}^{n}C_n^ig(i)f(n)=i=0∑nCnig(i)g(n)=∑i=0n(−1)n−iCnif(i)g(n)=\sum_{i=0}^{n}(-1)^{n-i}C_n^if(i)g(n)=i=0∑n(−1)n−iCnif(i)推...原创 2019-11-06 21:59:20 · 460 阅读 · 0 评论 -
【Comet OJ - Contest #13】D
Description传送门T<=1e5组数据,每组读入n,a,b,p(1≤n,a,b,p≤1018)T<=1e5组数据,每组读入n,a,b,p (1≤n,a,b,p≤10^{18} )T<=1e5组数据,每组读入n,a,b,p(1≤n,a,b,p≤1018)Solution将aia^iai化为(a)2i(\sqrt{a})^{2i}(a)2i,然后就可以将i化为2...原创 2019-10-26 21:58:02 · 302 阅读 · 2 评论 -
JZOJ6383. 【NOIP2019模拟2019.10.07】果实摘取
Description小 D 的家门口有一片果树林,果树上果实成熟了,小 D 想要摘下它们。为了便于描述问题,我们假设小 D 的家在二维平面上的 (0, 0) 点,所有坐标范围的绝对值不超过 N 的整点坐标上都种着一棵果树。((0, 0) 这个点没有果树)小 D 先站在 (0, 0) 处,正对着 (1, 0) 的方向。每次摘果实时,小 D 会逆时针选择他能看到的第 K 棵还未摘取果实的果...原创 2019-10-11 12:30:26 · 370 阅读 · 0 评论 -
JZOJ6272.【NOIP2019提高组A】整除
Description传送门Solutionn|xm-x等价于:任意p,满足 p|xm-x。p为质因子。将n的质因子p分开考虑。不难得出,在模p意义下满足以上条件的解y(y<p)。那么我们要求最终解x同时满足所有质因子条件,每一个质因子都可以选择一些解y中的一个并且要求x与y在模p意义下同余,那么这个条件肯定满足了。如果cnti表示对于第i个质因子y的个数,那么共有cnt...原创 2019-08-04 16:41:12 · 340 阅读 · 0 评论
分享