数据结构 (二)

树及二叉树

首先我们先看树的概念
一棵树是由n(n>0)个元素组成的有限集合,其中:
(1)每个元素称为结点(node);
(2)有一个特定的结点,称为根结点或树根(root);
(3)除根结点外,其余结点能分成m(m>=0)个互不相交的有限集合T0,T1,T2,……Tm-1。其中的每个子集又都是一棵树,这些集合称为这棵树的子树。
如下图是一棵典型的树:
在这里插入图片描述
**1、**一个结点的子树个数,称为这个结点的度;度为0的结点称为叶结点;度不为0的结点称为分支结点;根以外的分支结点又称为内部结点(结点2、4、7);树中各结点的度的最大值称为这棵树的度(这棵树的度为3)。
**2、**在用图形表示的树型结构中,对两个用线段(称为树枝)连接的相关联的结点,称上端结点为下端结点的父结点,称下端结点为上端结点的子结点。称同一个父结点的多个子结点为兄弟结点。称从根结点到某个子结点所经过的所有结点为这个子结点的祖先。称以某个结点为根的子树中的任一结点都是该结点的子孙。
**3、**定义一棵树的根结点的层次(level)为1,其它结点的层次等于它的父结点层次加1。一棵树中所有的结点的层次的最大值称为树的深度(depth)。
**4、**对于树中任意两个不同的结点,如果从一个结点出发,自上而下沿着树中连着结点的线段能到达另一结点,称它们之间存在着一条路径。可用路径所经过的结点序列表示路径,路径的长度等于路径上的结点个数减1。
**5、**森林(forest)是m(m>=0)棵互不相交的树的集合。

  • 树的存储结构

方法1:

数组,称为“父亲表示法”。
  const int m = 10; //树的结点数
  struct node
  {
   int data, parent; //数据域,指针域
  };
  node tree[m];
优缺点:利用了树中除根结点外每个结点都有唯一的父结点这个性质。很容易找到树根,但找孩子时需要遍历整个线性表。

方法2:

树型单链表结构,称为“孩子表示法”。每个结点包括一个数据域和一个指针域(指向若干子结点)。假设树的度为10,树的结点仅存放字符,则这棵树的数据结构定义如下:
const int m = 10; //树的度
typedef struct node;
typedef node *tree;
struct node
{
char data; //数据域
tree child[m]; //指针域,指向若干孩子结点
};
tree t;
缺陷:只能从根(父)结点遍历到子结点,不能从某个子结点返回到它的父结点。

方法3:

树型双链表结构,称为“父亲孩子表示法”。每个结点包括一个数据域和二个指针域(一个指向若干子结点,一个指向父结点)。假设树的度为10,树的结点仅存放字符,则这棵树的数据结构定义如下:
const int m = 10; //树的度
typedef struct node;
typedef node *tree; //声明tree是指向node的指针类型
struct node
{
char data; //数据域
tree child[m]; //指针域,指向若干孩子结点
tree father; //指针域,指向父亲结点
};
tree t;

方法4:

二叉树型表示法,称为“孩子兄弟表示法”。也是一种双链表结构,但每个结点包括一个数据域和二个指针域(一个指向该结点的第一个孩子结点,一个指向该结点的下一个兄弟结点)。
  typedef struct node;
  typedef node *tree;
  struct node
  {
   char data; //数据域
   tree firstchild, next; //指针域,分别指向第一个孩子结点和下一个兄弟结点
  };
  tree t;

- 树的遍历
A、先序(根)遍历:先访问根结点,再从左到右按照先序思想遍历各棵子树。
B、后序(根)遍历:先从左到右遍历各棵子树,再访问根结点。
C、层次遍历:按层次从小到大逐个访问,同一层次按照从左到右的次序。

其次就是二叉树,二叉树类似与树的概念,但区别在于首先二叉树中每个结点只能最多拥有2个结点二叉树可以为空,但是二叉树一定是有序的,可以通过它的左右子树表示出来。
二叉树的5种形态
在这里插入图片描述

- 二叉树的性质

【性质1】

在二叉树的第i层上最多有2^(i-1)个结点(i>=1)。
证明:很简单,用归纳法:当i=1时,2 ^(i-1) =1显然成立;现在假设第i-1层时命题成立,即第i-1层上最多有2^(i –2 )个结点。由于二叉树的每个结点的度最多为2,故在第i层上的最大结点数为第i-1层的2倍,

2*2i-2=2i–1。

【性质2】

深度为k的二叉树至多有2^k –1个结点(k>=1)。
证明:在具有相同深度的二叉树中,仅当每一层都含有最大结点数时,其树中结点数最多。因此利用性质1可得,深度为k的二叉树的结点数至多为:
20+21+…+2k-1=2k-1
故命题正确。

【特别】

一棵深度为k且有2k–1个结点的二叉树称为满二叉树。如下图A为深度为4的满二叉树,这种树的特点是每层上的结点数都是最大结点数。
可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,从左到右,由此引出完全二叉树的定义,深度为k,有n个结点的二叉树当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称为完全二叉树。

【性质3】

对任意一棵二叉树,如果其叶结点数为n0,度为2的结点数为n2,则一定满足:n0=n2+1。
证明:因为二叉树中所有结点的度数均不大于2,所以结点总数(记为n)应等于0度结点数n0、1度结点n1和2度结点数n2之和:
n=no+n1+n2 ……(式子1)
另一方面,1度结点有一个孩子,2度结点有两个孩子,故二叉树中孩子结点总数是:
nl+2n2
树中只有根结点不是任何结点的孩子,故二叉树中的结点总数又可表示为:
n=n1+2n2+1 ……(式子2)
由式子1和式子2得到:
no=n2+1

【性质4】

具有n个结点的完全二叉树的深度为floor(log2n)+1
证明:假设深度为k,则根据完全二叉树的定义,前面k-1层一定是满的,所以n>2k –1 -1。但n又要满足n<=2k -1。所以,2k–1–1<n<=2k -1。变换一下为2k–1<=n<2k。
以2为底取对数得到:k-1<=log2n<k。而k是整数,所以k= floor(log2n)+1。

【性质5】

对于一棵n个结点的完全二叉树,对任一个结点(编号为i),有:
①如果i=1,则结点i为根,无父结点;如果i>1,则其父结点编号为i/2。
如果2i>n,则结点i无左孩子(当然也无右孩子,为什么?即结点i为叶结点);否则左孩子编号为2i。
②如果2i+1>n,则结点i无右孩子;否则右孩子编号为2i+1。

  • 二叉树的存储结构

①链式存储结构,即单链表结构或双链表结构(同树)。

数据结构修改如下:
  typedef struct node;
  typedef node *tree;
  struct node
  {
   char data;
   tree lchild, rchild;
  };
  tree bt;
  或:
  typedef struct node;
  typedef node *tree;
  struct node
  {
   char data;
   tree lchild, rchild,father;
  };
  tree bt;
  在这里插入图片描述

②顺序存储结构,即几个数组加一个指针变量。

数据结构修改如下:
  const int n = 10;
  char data[n];
  char lchild[n];
  char rchild[n];
  int bt; //根结点指针
二叉树在处理表达式时经常用到,一般用叶结点表示运算元,分支结点表示运算符。这样的二叉树称为表达式树。可以看下图:
在这里插入图片描述
数据结构定义如下:
按表达式的书写顺序逐个编号,分别为1…9,注意表达式中的所有括号在树中是不出现的,因为表达式树本身就是有序的。叶结点的左右子树均为空(用0表示)。
  char data[9] = {‘a’, ‘+’, ‘b’, ‘/’, ‘c’, ‘’, ‘d’, ‘-’, ‘e’};
  int lchild[9] = {0,1,0,3,0,2,0,7,0};
  int rchild[9] = {0,4,0,5,0,8,0,9,0};
  int bt; //根结点指针,初值=6,指向’

二叉树的操作: 最重要的是遍历二叉树,但基础是建一棵二叉树、插入一个结点到二叉树中、删除结点或子树等。
现在有一个表达式:(a+b/c)*(d-e)。

  • 遍历二叉树
    所谓二叉树的遍历是指按一定的规律和次序访问树中的各个结点,而且每个结点仅被访问一次。“访问”的含义很广,可以是对结点作各种处理,如输出结点的信息等。遍历一般按照从左到右的顺序,共有3种遍历方法,先(根)序遍历,中(根)序遍历,后(根)序遍历。
    ㈠先序遍历的操作定义如下:
    若二叉树为空,则空操作,否则
    ①访问根结点
    ②先序遍历左子树
    ③先序遍历右子树
    void preorder(tree bt) //先序遍历根结点为bt的二叉树的递归算法
    {
    if(bt)
    {
    cout << bt->data;
    preorder(bt->lchild);
    preorder(bt->rchild);
    }
    }
    在这里插入图片描述
    ㈡中序遍历的操作定义如下:
    若二叉树为空,则空操作,否则
    ①中序遍历左子树
      ②访问根结点
    ③中序遍历右子树
       void inorder(tree bt) //中序遍历根结点为bt的二叉树的递归算法
       {
        if(bt)
        {
        inorder(bt->lchild);
        cout << bt->data;
        inorder(bt->rchild);
        }
       }

㈡中序遍历的操作定义如下:
若二叉树为空,则空操作,否则
①中序遍历左子树
  ②访问根结点
③中序遍历右子树
   void inorder(tree bt) //中序遍历根结点为bt的二叉树的递归算法
   {
    if(bt)
    {
    inorder(bt->lchild);
    cout << bt->data;
    inorder(bt->rchild);
    }
   }

㈢后序遍历的操作定义如下:
若二叉树为空,则空操作,否则
①后序遍历左子树
②后序遍历右子树
③访问根结点
void postorder(tree bt) //后序遍历根结点为bt的二叉树的递归算法
{
if(bt)
{
postorder(bt->lchild);
postorder(bt->rchild);
cout << bt->data;
}
}

- 二叉树的其他重要操作
除了“遍历”以外,二叉树的其它重要操作还有:建立一棵二叉树、插入一个结点到二叉树中、删除结点或子树等。
1、建立一棵二叉树
void pre_crt(tree &bt) //按先序次序输入二叉树中结点的值,生成
{
char ch;
ch = getchar(); //二叉树的单链表存储结构,bt为指向根结点的指针,’ ′ 表 示 空 树 i f ( c h ! = ′ '表示空树 if(ch != ' if(ch!=’)
{
bt = new node; //建根结点
bt->data = ch;
pre_crt(bt->lchild); //建左子树
pre_crt(bt->rchild); //建右子树
}
else bt = NULL;
}
2、删除二叉树
void dis(tree &bt) //删除二叉树
{
if(bt)
{
dis(bt->lchild); //删左子树
dis(bt->rchild); //删右子树
delete bt; //释放父结点
}
}

3.插入一个结点到排序二叉树中
void insert(tree &bt, int n) //插入一个结点到排序二叉树中
{
if(bt)
{
if(n < bt->data) insert(bt->lchild, n);
else if(n > bt->data) insert(bt->rchild, n);
}
else
{
bt = new node; //新开一个空间
bt->data = n;
bt->lchild = bt->rchild = NULL;
}
}
4.在排序二叉树中查找一个数,找到返回该结点,否则返回NULL
tree findn(tree bt, int n) //在二叉树中查找一个数,找到返回该结点,否则返回NULL。
{
if(bt)
{
if(n < bt->data) findn(bt->lchild, n);
else if(n > bt->data) findn(bt->rchild, n);
else return bt;
}
else return NULL;
}
5.用嵌套括号表示法输出二叉树
void print(tree bt) //用嵌套括号表示法输出二叉树
{
if(bt)
{
cout << bt->data;
if(bt->lchild || bt->rchild)
{
cout << ‘(’;
print(bt->lchild);
if(bt->rchild) cout << ‘,’;
print(bt->rchild);
cout << ‘)’;
}
}
}

  • 树的计数问题
    具有n个结点的不同形态的二叉树有多少棵?具有n个结点的不同形态的树有多少棵?首先了解两个概念,“相似二叉树”是指两者都为空树或者两者均不为空树,且它们的左右子树分别相似。“等价二叉树”是指两者不仅相似,而且所有对应结点上的数据元素均相同。二叉树的计数问题就是讨论具有n个结点、互不相似的二叉树的数目Bn。
    在n很小时,很容易得出,B0=1,B1=1,B2=2,B3=5(下图)。
    在这里插入图片描述
    在n很一般情况,一棵具有n(n>1)个结点的二叉树可以看成是由一个根结点、一棵具有i个结点的左子树和一棵具有n-i-1个结点的右子树组成,其中0<=i<=n-1,
    由此不难得出下列递归公式:
    在这里插入图片描述
    我们可以利用生成函数讨论这个递归公式,得出:Bn=在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值