最大堆
如果任意节点的值总是 ≥ 子节点的值,称为:最大堆、大根堆、大顶堆
如果任意节点的值总是 ≤ 子节点的值,称为:最小堆、小根堆、小顶堆
索引 i 的规律( n 是元素数量)
如果 i = 0 ,它是根节点
如果 i > 0 ,它的父节点的索引为 floor( (i – 1) / 2 )
如果 2i + 1 ≤ n – 1,它的左子节点的索引为 2i + 1
如果 2i + 1 > n – 1 ,它无左子节点
如果 2i + 2 ≤ n – 1 ,它的右子节点的索引为 2i + 2
如果 2i + 2 > n – 1 ,它无右子节点
添加

◼ 循环执行以下操作(图中的 80 简称为 node)
如果 node > 父节点
✓ 与父节点交换位置
如果 node ≤ 父节点,或者 node 没有父节点
✓ 退出循环

将新添加节点备份,确定最终位置才摆放上去
删除
- 用最后一个节点覆盖根节点
- 删除最后一个节点
- 循环执行以下操作
如果 node < 最大的子节点
✓ 与最大的子节点交换位置
如果 node ≥ 最大的子节点, 或者 node 没有子节点
✓ 退出循环
◼ 这个过程,叫做下滤(Sift Down),时间复杂度:O(logn)
heapify
自上而下的上滤
每上滤一个就形成一个更大的最大堆
相当于添加:即在添加之前,前面的就已经是最大堆,在其基础上添加
自上而下的下滤

有点分治思想
73和34所在的子树分别形成局部最大堆
然后30再去融合,形成整体的最大堆
类似于删除,要进行根节点下滤
效率对比

-
上滤:越到后面节点数越多,非常多的节点在做工作量比较大的事情,需要上滤logn
◼ 所有节点的深度之和
仅仅是叶子节点,就有近 n/2 个,而且每一个叶子节点的深度都是 O(logn) 级别的
因此,在叶子节点这一块,就达到了 O(nlogn) 级别
O(nlogn) 的时间复杂度足以利用排序算法对所有节点进行全排序 -
下滤相反
◼ 所有节点的高度之和
假设是满树,节点总个数为 n,树高为 h,那么 n = 2h − 1所有节点的树高之和 H(n) = 20 ∗ (h−0) + 21 ∗ (h−1) + 22 ∗ (h−2) + ⋯ + 2h−1 ∗ [h−(h−1)]
H(n) = h ∗ (20 + 21 + 22 + ⋯ + 2h−1) − 1 ∗ 21 + 2 ∗ 22 + 3 ∗ 23 + ⋯ + (h−1) ∗ 2h−1
H(n) = h ∗ (2h − 1) − [(h − 2) ∗ 2h + 2] // 交错相减 S(h) - 2S(h)
H(n) = h ∗ 2h − h − h∗2h + 2h+1 − 2
H(n) = 2h+1 − h − 2 = 2 ∗ (2h − 1) − h = 2n − h = 2n − log2(n + 1) = O(n)
Top K 问题
从 n 个整数中,找出最大的前 k 个数( k 远远小于 n )
◼ 如果使用排序算法进行全排序,需要 O(nlogn) 的时间复杂度
◼ 如果使用二叉堆来解决,可以使用 O(nlogk) 的时间复杂度来解决
新建一个小顶堆
扫描 n 个整数
✓ 先将遍历到的前 k 个数放入堆中
✓ 从第 k + 1 个数开始,如果大于堆顶元素,就使用 replace 操作(删除堆顶元素,将第 k + 1 个数添加到堆中)
即堆顶为最小值,每次都换掉最小值,剩下的都是最大的
体现了堆的偏序性质,即只要满足大小关系,而不是有序的
扫描完毕后,堆中剩下的就是最大的前 k 个数
◼ 如果是找出最小的前 k 个数呢?
用大顶堆
如果小于堆顶元素,就使用 replace 操作
code
public class BinaryHeap<E> extends AbstractHeap<E> {
private E[] elements;
private static final int DEFAULT_CAPACITY = 10;
public BinaryHeap(E[] elements, Comparator<E> comparator) {
super(comparator);
if (elements == null || elements.length == 0) {
this.elements = (E[]) new Object[DEFAULT_CAPACITY];
} else {
size = elements.length;
int capacity = Math.max(elements.length, DEFAULT_CAPACITY);
this.elements = (E[]) new Object[capacity];
// 这里不让自己的elements直接引用外部传的数组
// 防止发生外面的数组变化,所以采用深拷贝
for (int i = 0; i < elements.length; i++) {
this.elements[i] = elements[i];
}
heapify();
}
}
public BinaryHeap(E[] elements) {
this(elements, null);
}
public BinaryHeap(Comparator<E> comparator) {
this(null, comparator);
}
public BinaryHeap() {
this(null, null);
}
@Override
public void clear() {
for (int i = 0; i < size; i++) {
elements[i] = null;
}
size = 0;
}
@Override
public void add(E element) {
elementNotNullCheck(element);
ensureCapacity(size + 1);
elements[size++] = element;
siftUp(size - 1);
}
@Override
public E get() {
emptyCheck();
return elements[0];
}
@Override
public E remove() {
emptyCheck();
int lastIndex = --size;
E root = elements[0];
elements[0] = elements[lastIndex];
elements[lastIndex] = null;
siftDown(0);
return root;
}
@Override
public E replace(E element) {
elementNotNullCheck(element);
E root = null;
if (size == 0) {
elements[0] = element;
size++;
} else {
root = elements[0];
elements[0] = element;
siftDown(0);
}
return root;
}
/**
* 批量建堆
*/
private void heapify() {
// 自上而下的上滤
// for (int i = 1; i < size; i++) {
// siftUp(i);
// }
// 自下而上的下滤
for (int i = (size >> 1) - 1; i >= 0; i--) {
siftDown(i);
}
}
/**
* 让index位置的元素下滤
* @param index
*/
private void siftDown(int index) {
E element = elements[index];
int half = size >> 1;
// 完全二叉树非叶子数量 = size >> 1
// 第一个叶子节点的索引 == 非叶子节点的数量
// index < 第一个叶子节点的索引
// 必须保证index位置是非叶子节点
while (index < half) {
// index的节点有2种情况
// 1.只有左子节点
// 2.同时有左右子节点
// 默认为左子节点跟它进行比较
int childIndex = (index << 1) + 1;
E child = elements[childIndex];
// 右子节点
int rightIndex = childIndex + 1;
// 选出左右子节点最大的那个
if (rightIndex < size && compare(elements[rightIndex], child) > 0) {
child = elements[childIndex = rightIndex];
}
if (compare(element, child) >= 0) break;
// 将子节点存放到index位置
elements[index] = child;
// 重新设置index
index = childIndex;
}
elements[index] = element;
}
/**
* 让index位置的元素上滤
* @param index
*/
private void siftUp(int index) {
E element = elements[index];
while (index > 0) {
int parentIndex = (index - 1) >> 1;
E parent = elements[parentIndex];
if (compare(element, parent) <= 0) break;
// 将父元素存储在index位置
elements[index] = parent;
// 重新赋值index
index = parentIndex;
}
elements[index] = element;
}
private void ensureCapacity(int capacity) {
int oldCapacity = elements.length;
if (oldCapacity >= capacity) return;
// 新容量为旧容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
E[] newElements = (E[]) new Object[newCapacity];
for (int i = 0; i < size; i++) {
newElements[i] = elements[i];
}
elements = newElements;
}
private void emptyCheck() {
if (size == 0) {
throw new IndexOutOfBoundsException("Heap is empty");
}
}
private void elementNotNullCheck(E element) {
if (element == null) {
throw new IllegalArgumentException("element must not be null");
}
}
}
Reference:小码哥MJ
2569

被折叠的 条评论
为什么被折叠?



