关于情感分析评论情感分类的一点思考

1.我们通常在计算词汇表的时候,会排除那些出现次数太少的单词,从而降低文本维度。
这个想法不错
据说贝叶斯算法对文本分类用的多,可惜目前准确率不如svm
2.基于属性词典的分类方式,目前市面上没有关于手机各属性的词典,所以涉及到自己构建属性词典。这个想法也不错,可以尝试选出几个关键词进行分类。

3.CountVectorize
CountVectorizer是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。
CountVectorizer会将文本中的词语转换为词频矩阵,它通过fit_transform函数计算各个词语出现的次数。
这也是一种文本化数值方法 值得尝试。
博客园情感分析已收藏,慢慢学习试一下
4.最后正确率低于80的话用bert试一下,bert是近期最新的很好用的一个情感分析框架,涵盖情感分析的各个方面。听说效果很好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值