零、全局池化介绍
普通池化方法汇总详见:https://blog.csdn.net/qq_43665602/article/details/126625116
全局池化与普通池化的区别在于“局部区域”和“全局”:普通池化根据滑动窗口以及步长以逐步计算局部区域的方式进行;而全局池化是分别对每个通道的所有元素进行计算,谓之全局池化。
全局池化方式的优点:
- 大大降低计算的参数量;
- 没有需要学习的参数,可以更好的避免过拟合;
- 更能体现输入的全局信息;
拿一个简单的网络验证参数量下降(此处只计算权重):
因为池化操作是沿着通道方向对该通道的特征进行,故对于输入(N,C,H,W),池化输出为(N,C)。此处输入特征为(N,C,H,W)=(1,3,3,3),故池化输出为(N,C)=(1,3)。


本文介绍了全局池化与普通池化的区别,强调了全局池化在减少参数量、防止过拟合和保留全局信息方面的优势。接着,详细解释了如何在Pytorch中通过设置滑动窗口大小实现全局平均池化和最大池化,并指出这两种全局池化方法在通道数保持不变的情况下,每个通道仅输出一个元素。
订阅专栏 解锁全文
5万+

被折叠的 条评论
为什么被折叠?



