【转】索引失效有哪些?

转自:
https://xiaolincoding.com/mysql/index/index_lose.html#%E7%B4%A2%E5%BC%95%E5%A4%B1%E6%95%88%E6%9C%89%E5%93%AA%E4%BA%9B

对索引使用左或者左右模糊匹配

当我们使用左或者左右模糊匹配时(即"like %xx"或者"like %xx%"),会造成索引失效。

但在使用前缀匹配时(即"like xx%"),却会走索引扫描。

因为索引 B+ 树是按照索引值有序排列存储的,只能根据前缀进行比较。

在这里插入图片描述

假设我们要查询 name 字段前缀为「林」的数据,也就是 name like ‘林%’,扫描索引的过程如下:

  1. 首节点查询比较:“林”的拼音大小比首节点的第一个索引值中的“陈”大,但是比首节点的第二个索引值中的“周”小,所以选择去节点 2 继续查询
  2. 节点 2 查询比较:节点 2 的第一个索引值中的“陈”的拼音大小比“林”小,所以继续看下一个索引值,发现节点 2 有与“林”前缀匹配的索引值,于是就往叶子节点查询,即叶子节点 4
  3. 节点 4 查询比较:节点 4 的第一个索引值的前缀符合“林”,于是就读取该行数据,接着继续向右匹配,直到匹配不到前缀为“林”的索引值

如果使用 name like ‘%林’ 方式来查询,因为查询的结果可能是陈林、张林、周林等之类的,所以 MySQL 不知道从哪个索引值开始比较,于是就只能通过全表扫描的方式来查询。

MySQL 使用"like %xx"时,索引一定会失效吗?

使用左模糊匹配并不一定会走全表扫描,关键还是要看数据表中的字段情况。

如果数据表中的字段只有主键 + 二级索引,那么即使使用左模糊匹配,也不会走全表扫描(type = all),而是会走全扫描二级索引树(type = index)。

同时,联合索引要遵循最左匹配原则才能走索引,但同样的,如果数据表中的字段全都是索引的话,即使在查询过程中没有遵循最左匹配原则,也是会走索引扫描的(type = index)。

这是因为数据表中没有非索引字段,所以 select * 就相当于 select id, name,然后这个查询的数据都在二级索引的 B+ 树上,因为二级索引的 B+ 树的叶子节点包含了索引值 + 主键值,所以查找二级索引树就能够查到所需的数据了,即发生覆盖索引。

执行计划里的 type = index,代表着是通过全扫描二级索引的 B+ 树的方式来查询数据的,即遍历了整个索引树。

为什么选择全扫描二级索引树,而不是扫描全表(聚簇索引)呢?

因为二级索引树里记录的东西很少,只有索引值 + 主键值,而聚簇索引里记录的东西更多,比如记录了主键值、事务 id、用于事务和 MVCC 的回流指针以及所有的剩余列。再加上当前的 select * 不需要回表查询,所以 MySQL 优化器认为直接遍历二级索引树会比遍历聚簇索引树的成本更小。

为什么数据表加上非索引字段,执行同样的查询语句后,走的是全表扫描了呢?

因为加了非索引字段后,要查询的数据就不能只在二级索引树里找到了,还得需要回表查询,再加上是模糊匹配,无法有效利用索引树的有序性来快速定位数据,所以得遍历二级索引树后,获取主键值,再通过聚簇索引检索到对应得数据行。

MySQL 优化器认为这样的查询过程成本太高了,于是就直接选择全表扫描的方式。

对索引使用函数

如果查询条件中对索引字段使用了函数,就会导致索引失效。

比如下面这条语句在查询条件中对 name 字段使用了 LENGTH 函数,执行计划中 type = ALL,代表全表扫描。

// name为二级索引
select * from t_user where length(name)=6;

为什么对索引使用函数,就无法走索引了呢?

因为索引保存的是索引字段的原始值,而不是经过函数计算后的值,自然就没办法走索引了。

不过,从 MySQL 8.0 开始,索引特性增加了函数索引,即可以针对函数计算后的值建立一个索引,也就是说该索引的值是函数计算后的值,所以就可以通过扫描索引来查询数据。

下面这条语句,对 length(name) 的计算结果建立一个名为 idx_name_length 的索引。

alter table t_user add key idx_name_length ((length(name)));

然后再用下面这条查询语句,这时候就会走索引了。

在这里插入图片描述

对索引进行表达式计算

在查询条件中对索引进行表达式计算,也是无法走索引的。

下面这条查询语句,执行计划中 type = ALL,说明是通过全表扫描的方式查询数据的。

explain select * from t_user where id + 1 = 10;

但是,如果把查询语句的条件改成 where id = 10 - 1,这样就不是在索引字段进行表达式计算了,于是就可以走索引查询了。

为什么对索引进行表达式计算,就无法走索引了呢?

原因和对索引使用函数差不多。

因为索引保存的是索引字段的原始值,而不是 id + 1 表达式计算后的值,自然无法走索引。只能通过把索引字段的值都取出来,然后依次进行表达式计算来进行条件判断,因此采用的就是全表扫描的方式。

有的同学可能会说,这种对索引进行简单的表达式计算,在代码特殊处理下,应该是可以做到索引扫描的,比如将 id + 1 = 10 变成 id = 10 - 1。

是的,是能够实现,但是 MySQL 还是偷了这个懒,没有实现。

可能也是因为,表达式计算的情况多种多样,如果每种都要考虑,代码可能会很臃肿,所以 MySQL 干脆将这种索引失效的场景告诉程序员,让程序员自己保证在查询条件中不要对索引进行表达式计算。

对索引进行隐式类型转换

如果索引字段是字符串类型,但是在条件查询中,输入的参数是整型的话,你会在执行计划中发现这条语句会走全表扫描。

在 t_user 表增加 phone 字段,是二级索引并且类型是 varchar。

在这里插入图片描述

然后在条件查询中,用整型作为输入参数,此时执行计划中 type = ALL,所以是通过全表扫描来查询数据的。

select * from t_user where phone = 1300000001;

但是如果索引字段是整型类型,查询条件中的输入参数是字符串,是不会导致索引失效的,还是可以走索引扫描。

假设 id 是整型,但是下面这条语句还是走了索引扫描。

explain select * from t_user where id = '1';

为什么第一个例子会导致索引失效,而第二个例子却不会呢?

MySQL 在遇到字符串和数字比较的时候,会自动把字符串转为数字,然后再进行比较。

// 例一中的查询语句
select * from t_user where phone = 1300000001;

因为 phone 字段为字符串,所以 MySQL 会自动把字符串转为数字,所以这条语句其实相当于做了转换。

select * from t_user where CAST(phone AS signed int) = 1300000001;

可以看到,CAST 函数是作用在了 phone 字段上,而 phone 字段是索引,即对索引使用了函数!而对索引使用函数是会导致索引失效的。

// 例二中的查询语句
select * from t_user where id = "1";

因为字符串部分是输入参数,也就需要将字符串转为数字,所以这条语句也做了转换。

select * from t_user where id = CAST("1" AS signed int);

可以看到,索引字段并没有用任何函数,CAST 函数是作用在了输入参数上,因此是可以走索引扫描的。

联合索引非最左匹配

对主键字段建立的索引叫做聚簇索引,对普通字段建立的索引叫做二级索引。

多个普通字段组合在一起创建的索引就叫做联合索引,也叫组合索引。

创建联合索引时,我们需要注意创建时的顺序问题,因为联合索引 (a,b,c) 和 (c,b,a) 在使用的时候会存在差别。

联合索引要能正确使用,需要遵循最左匹配原则,即按照最左优先的方式进行索引的匹配。

如果创建了一个 (a,b,c) 联合索引,以下这几种查询条件可以匹配上联合索引:

  • where a = 1
  • where a = 1 and b = 2 and c = 3
  • where a = 1 and b = 2

需要注意,因为有查询优化器的存在,所以 a 字段在 where 子句的顺序并不重要。

但如果是以下这几种查询条件,因为它们不符合最左匹配原则,所以无法匹配上联合索引,联合索引就会失效:

  • where b = 2
  • where c = 3
  • where b = 2 and c = 3

还有一个比较特殊的查询条件:where a = 1 and c = 3,符合最左匹配吗?

这种其实严格意义上来说是属于索引截断,不同的版本处理方式也不一样。

MySQL 5.5 中,前面 a 字段会走索引,在联合索引找到主键值后,开始回表,到主键索引读取数据行,然后再比对 c 字段的值。

从 MySQL 5.6 之后,有一个索引下推的功能,可以在索引遍历的过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

大概原理是:截断的字段会被下推到存储引擎层进行条件判断(因为 c 字段的值是在 (a,b,c) 联合索引里的),然后过滤出符合条件的数据后再返回给 Server 层。由于在引擎层就过滤掉了大量的数据,所以无需再回表读取数据来进行判断,减少回表次数,从而提升了性能。

比如下面这条 where a = 1 and c = 0 语句,执行计划中 Extra = Using index condition,使用了索引下推功能。

在这里插入图片描述

为什么联合索引不遵循最左匹配原则就会失效?

原因是在联合索引的情况下,数据是按照索引第一列排序,第一列数据相同时才会按照第二列排序。

也就是说,如果我们想使用联合索引中尽可能多的列,查询条件中的各个列必须是联合索引中从最左边开始连续的列。如果我们仅仅按照第二列搜索,那么肯定无法走索引的。

WHERE 子句中的 OR

在 where 子句中,如果在 or 前的条件列是索引列,而在 or 后的条件列不是索引列,那么索引就会失效。

比如下面的查询语句中,id 是主键,age 是普通列,从执行计划的结果看,是走了全表扫描。

select * from t_user where id = 1 or age = 18;

这是因为 or 的含义就是两个只要满足其中一个即可,因此只有一个条件列是索引列是没有意义的,只要有条件列不是索引列,就会进行全表扫描。

解决办法很简单,将 age 字段设置为索引即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值