转:
https://mp.weixin.qq.com/s/ChwnzSCwc8HU4QQLz7VNPQ
1、创建索引
执行没有索引的 SQL 语句,肯定要走全表扫描,慢是肯定的。
这种查询毫无疑问是一个慢 SQL 查询。
是不是要收集所有的 where 查询条件,然后针对所有的组合都创建索引呢?
答案肯定是否定的。
MySQL 为了提升数据查询速率,采用 B+ 树结构,通过空间换时间的设计思想。另外每次对表数据做更新操作时,都要调整对应的索引树,执行效率肯定会受影响。
阿里巴巴的开发者手册中,建议单表的索引数量控制在 5 个以内,组合索引字段数不允许超过 5 个。
其他建议:
- 禁止给表中的每一列都建立单独的索引
- 每个 InnoDB 表必须有个主键
- 要注意组合索引的字段顺序
- 优先考虑覆盖索引
- 避免使用外键约束
2、避免索引失效
不要以为有了索引,就万事大吉。
殊不知,索引失效也是慢查询的主要原因之一。
常见的索引失效的场景有哪些?
- 以 % 开头的 LIKE 查询
- 创建了组合索引,但查询条件不满足“最左匹配原则”。如:创建索引 idx_type_status_uid(type, status, uid),但是使用 status 和 uid 作为查询条件
- 查询条件中使用 or,且 or 的前后条件中有一个列没有索引,涉及的索引都不会被使用到
- 在索引列上的操作,函数 upper() 等、or、!= (<>)、not in 等
3、锁粒度
MySQL 的存储引擎分为两大类:MyISAM 和 InnoDB。
MyISAM 支持表锁;InnoDB 支持行锁和表锁。
更新操作时,为了保证表数据的准确性,通常会加锁,为了提高系统的高并发能力,我们通常建议采用行锁,减少锁冲突和锁等待的时间。所以存储引擎通常会选择 InnoDB。
有哪些场景会导致行锁可能会升级为表锁呢?
- 如果一个表批量更新,大量使用行锁,可能会导致其他事务长时间的等待,严重影响事务的执行效率。此时,MySQL 会将行锁升级为表锁
- 行锁是针对索引加的锁,如果条件索引失效,那么行锁也会升级为表锁
注意,行锁将锁的粒度缩小了,进而提高了系统的并发能力。但是可能会产生死锁,需要特别关注。
4、分页查询优化
如果要开发一个列表展示页面并支持翻页,我们通常会这样写 SQL。
select * from 表 limit #{start}, #{pageSize};
随着翻页的深度加大, start 值会越来越大,比如 limit 10000, 10 看似只返回了 10 条数据,但是数据库引擎需要查询 10010 条记录,然后将前面的 10000 条丢弃,最终只返回最后的 10 条记录,性能可想而知。
针对这个问题,我们通常有另一种解决方案:
- 先定位到上一次分页的最大 id,然后对 id 做条件索引查询。由于数据库的索引采用 B+ 树结构,这样可以一步到位。但是这种翻页方式只支持上一页、下一页,不支持跨越式翻页
select * from 表 where id > #{id} limit #{pageSize};
上图是淘宝的商品搜索列表,为了让用户的体验更好,采用的也是直梯式翻页。
为了避免翻页过深,影响性能,产品交互上还做了一些取舍,对总页数做了限制,最多支持 100 页。
- 方案二:采用子查询
select * from 表 where id > (select id from 表 order by id limit 10000 1) limit 20;
将原来的单 SQL 查询拆成两步:
- 首先,查询出一页数据中的最小 id
- 然后,通过 B+ 树,精确定位到最小 id 的索引树节点位置,通过偏移量读取后面的 20 条数据
5、避免 select *
反面案例:
select * from 表 where buyer_id = #{buyer_id};
我们知道,MySQL 在创建表后,具体的行数据存储在主键索引(聚簇索引)的叶子节点。
二级索引属于非聚簇索引,其叶子节点存储的是主键值。
select * 的查询过程:
- 先在 buyer_id 的二级索引 B+ 树上,查出对应的主键 id 列表
- 然后进行回表操作,在主键索引中查询 id 对应的行数据
所以,我们需要罗列清楚必须的查询字段,且字段尽量在覆盖索引中,从而减少回表操作。
6、EXPLAIN 分析 SQL 执行计划
// 创建表
CREATE TABLE `user` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`income` bigint(20) NOT NULL COMMENT '收入',
`expend` bigint(20) NOT NULL COMMENT '支出',
PRIMARY KEY (`id`),
KEY `idx_income` (`income`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='用户表';
CREATE TABLE `biz_order` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`user_id` bigint(20) NOT NULL COMMENT '用户id',
`money` bigint(20) NOT NULL COMMENT '金额',
PRIMARY KEY (`id`),
KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='订单表';
// 插入记录
insert into user values(10,100,100);
insert into user values(20,200,200);
insert into user values(30,300,300);
insert into user values(40,400,400);
insert into biz_order values(1,10,30);
insert into biz_order values(2,10,40);
insert into biz_order values(3,10,50);
insert into biz_order values(4,20,10);
比如下面的语句,我们检查是否使用了索引,可以通过 explain 分析相应的执行计划。
explain select * from user where id < 20;
接下来,我们来逐一来说明每个字段的含义。
- id:每一次 select 查询都会生成一个 id,值越大,优先级越高,会被优先执行
- select_type:查询类型,SIMPLE(普通查询,即没有联合查询、子查询)、PRIMARY(主查询)、UNION(UNION 中后面的查询)、SUBQUERY(子查询)等
- table:查询哪张表
- partitions:分区,如果对应的表存在分区表,那么这里就会显示具体的分区信息
- type:执行方式,是 SQL 优化中一个很重要的指标,其结果值从好到差依次是 system > const > eq_ref > ref > range > index > ALL
- system/const:表中只有一行数据匹配,此时根据索引,查询一次就能找到对应的数据
- eq_ref:使用唯一索引扫描,常见于多表连接中使用主键和唯一索引作为关联条件
- ref:非唯一索引扫描,还可见于唯一索引最左原则匹配扫描
- range:索引范围扫描,比如 <、>、between 等操作
- index:索引全表扫描,此时遍历整个索引树
- ALL:表示全表扫描,需要遍历全表来找到对应的行
- possible_keys:可能用到的索引
- key:实际用到的索引
- key_len:索引长度
- ref:关联 id 等信息
- rows:查找到记录所扫描的行数,SQL 优化的重要指标,扫描的行数越少,性能越高
- filtered:查找到所需记录占总扫描记录数的比例
- Extra:额外的信息
explain select * from user u, biz_order b where u.id = b.user_id and u.id < 20;
7、Show Profile 分析 SQL 执行性能
Show Profile 与 EXPLAIN 的区别:前者主要是在外围分析;而后者则是深入到 MySQL 内核,从执行线程的状态和时间来分析。
MySQL 在 5.0.37 版本之后才支持 Show Profile,select @@have_profiling 返回 YES 则表示功能已开启。
mysql> show profiles;
Empty set, 1 warning (0.00 sec)
显示为空,说明 profiles 功能是关闭的。
可以通过下面命令开启。
mysql> set profiling=1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
获取 Query_ID 之后,通过 show profile for query ID,查看 SQL 语句在执行过程中线程的每个状态所消耗的时间。