matlab牛顿迭代法求解渐开线函数
function alpha=ainv(inv_value)
ever_x=89/180*pi;%通过牛顿迭代法的区间选取法则,渐开线函数一阶导和和二阶导均大于零,需选一上极点
n=0;
while n<1000%迭代1000次
new_x=ever_x-(tan(ever_x)-ever_x-inv_value)/(tan(ever_x)^2);
%tan(ever_x)-ever_x-inv_value为原函数,tan(ever_x)^2为一阶导函数
ever_x=new_x;
n=n+1;
end
alpha=new_x/pi*180;%将弧度化为角度
end
代码展示20度的渐开线函数值约为0.0149

本文介绍了一种使用Matlab实现的牛顿迭代法,用于求解渐开线函数的数值解。通过设定初始值和迭代次数,算法能够精确计算出特定角度对应的渐开线函数值,例如20度时的函数值约为0.0149。

被折叠的 条评论
为什么被折叠?



