普通用户使用spark的client无法更新Ranger策略

文章讲述了普通Spark用户在尝试通过client更新Ranger策略时遇到403错误,原因在于Ranger的官方配置仅支持通配符*或指定用户列表。管理员权限用户可以直接下载策略。解决方法是检查并调整Ranger配置以允许特定用户访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

普通用户使用spark的client无法更新Ranger策略

报错图片:

在这里插入图片描述

 WARN org.apache.ranger.admin.client.RangerAdminRESTClient: Error getting Roles. secureMode=true, user=caojianxiang@UCDIPA.VIATRIS.CC (auth:KERBEROS),response=f"httpStatusCode":403,"statusCode":0serviceName=ranger-hive-service

解决:
policy.download.auth.users
查看官方的配置只支持2种写法
1、设置为通配符*,允许任何用户访问和下载策略文件
2、设置用户列表,例如:user1,user2,user3…
PS:admin 权限可以直接下载策略
操作:(采用了官方配置1)
在这里插入图片描述
在这里插入图片描述

验证:
在这里插入图片描述

<think>好的,用户想了解Apache Hudi的开发规范和最佳实践。我需要先回忆Hudi的核心概念和常见的使用场景。Hudi主要用于大数据湖的增量处理,支持高效的upsert和事务管理。首先,最佳实践可能涉及数据建模、文件管理、写入和查询优化等方面。 记得Hudi有两种表类型:COW和MOR。COW适合写少读多的场景,而MOR适合频繁写入的情况。需要提到如何根据业务需求选择合适的表类型。另外,主键设计很重要,必须确保唯一性,比如使用复合主键或UUID。 在数据分区方面,用户可能需要合理设计分区策略,比如按时间分区,避免小文件问题。Hudi的Clustering和Compaction功能可以优化文件布局,提升查询性能,这部分需要详细说明。 写入优化方面,提到批量写入、并行度调整、避免小批量写入。还有索引的选择,比如布隆过滤器和HBase索引的区别,适用场景是什么。 查询优化可能需要结合引擎,比如Spark或Flink,利用Hudi的元数据表加速查询。时间旅行和增量查询也是Hudi的特色功能,应该作为最佳实践的一部分。 编码规范方面,需要强调配置管理,比如统一管理表属性,使用HoodieWriteConfig。异常处理和监控日志,比如记录关键指标和失败重试机制。版本兼容性也很重要,确保各组件版本一致。 另外,数据治理方面,Schema演进和元数据管理需要注意事项,比如使用Avro的Schema兼容性规则。最后,安全性和权限控制,比如集成Ranger或AWS IAM。 需要参考用户提供的引用,但用户给的引用似乎不相关,可能之前的对话中有更多信息。不过用户这次的问题集中在Hudi的最佳实践,所以应集中整理这些点,确保结构清晰,分点说明,并给出代码示例,比如Clustering和Compaction的配置。</think>### Apache Hudi开发最佳实践与编码规范 #### 一、数据建模规范 1. **表类型选择** - **COW表(写时复制)**:适用于读多写少场景,通过重写文件实现ACID事务,查询性能更优[^1] - **MOR表(读时合并)**:适合高频更新场景,通过增量日志文件减少写入延迟 ```sql -- 建表示例 CREATE TABLE hudi_table USING hudi TBLPROPERTIES ( type = 'cow', -- 或 'mor' primaryKey = 'id', preCombineField = 'ts' ) ``` 2. **主键设计** - 必须定义具有业务意义的唯一主键(如订单号+时间戳的复合主键) - 建议添加`_hoodie_record_key`字段显式声明主键 ```java // Java写入配置示例 HoodieWriteConfig config = HoodieWriteConfig.newBuilder() .withPath("/hudi_data") .withSchema(schema) .withKeyGenerator(HoodieKeyGeneratorFactory.createKeyGenerator(props)) .build(); ``` #### 二、写入优化实践 1. **文件管理策略** - 通过`hoodie.parquet.max.file.size`控制文件大小(推荐256MB-1GB) - 启用自动压缩: ```properties hoodie.compact.inline=true hoodie.compact.inline.max.delta.commits=5 ``` 2. **索引选择原则** | 索引类型 | 适用场景 | 性能特点 | |----------------|------------------------------|-----------------------| | 布隆过滤器索引 | 高频更新场景 | 内存消耗低,查询效率高 | | HBase索引 | 精确匹配场景 | 额外维护成本 | | 全局索引 | 跨分区更新 | 强一致性保证 | 3. **批量写入优化** ```python # PySpark写入示例 hudi_options = { 'hoodie.datasource.write.recordkey.field': 'id', 'hoodie.datasource.write.precombine.field': 'ts', 'hoodie.upsert.shuffle.parallelism': 200, 'hoodie.insert.shuffle.parallelism': 200, 'hoodie.bulkinsert.shuffle.parallelism': 200 } df.write.format("hudi").options(**hudi_options).mode("append").save("/hudi_table") ``` #### 三、查询加速方案 1. **元数据表加速** 启用Hudi元数据表实现二级索引: ```properties hoodie.metadata.enable=true hoodie.metadata.index.column.stats.enable=true ``` 2. **时间旅行查询** ```sql SELECT * FROM hudi_table TIMESTAMP AS OF '2023-07-01 00:00:00' ``` #### 四、编码规范 1. **配置管理规范** - 统一管理表属性配置 - 使用环境变量注入敏感参数: ```java config.setValue(HoodieWriteConfig.TABLE_NAME, System.getenv("HUDI_TABLE_NAME")); ``` 2. **异常处理标准** ```java try { client.commit(instantTime, writeResult); } catch (HoodieCommitException e) { logger.error("Commit failed, initiating rollback", e); client.rollback(instantTime); throw new DataPipelineException("Hudi commit failure", e); } ``` #### 五、数据治理要求 1. **Schema演进规则** - 向后兼容修改(增加字段) - 向前兼容修改(设置默认值) ```avro { "type": "record", "name": "User", "fields": [ {"name": "id", "type": "string"}, {"name": "new_field", "type": ["null", "string"], "default": null} ] } ``` 2. **数据保留策略** ```properties hoodie.keep.min.commits=20 hoodie.keep.max.commits=30 hoodie.cleaner.commits.retained=5 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值