小团从某不知名论坛上突然得到了一个测试默契度的游戏,想和小美玩一次来检验两人的默契程度。游戏规则十分简单,首先给出一个长度为 n 的序列,最大值不超过 m 。
小团和小美各自选择一个 [1,m] 之间的整数,设小美选择的是 l ,小团选择的是 r ,我们认为两个人是默契的需要满足以下条件:
l 小于等于 r 。
对于序列中的元素 x ,如果 0<x<l ,或 r<x<m+1 ,则 x 按其顺序保留下来,要求保留下来的子序列单调不下降。
小团为了表现出与小美最大的默契,因此事先做了功课,他想知道能够使得两人默契的二元组 <l,r> 一共有多少种。
我们称一个序列 A 为单调不下降的,当且仅当对于任意的 i>j ,满足 A[i]>=A[j] 。
格式:
输入:
- 输入第一行包含两个正整数 m 和 n ,表示序列元素的最大值和序列的长度。
- 输入第二行包含 n 个正整数,表示该序列。
输出:
- 输出仅包含一个整数,表示能使得两人默契的二元组数量。
示例:
输入:
5 5
4 1 4 1 2
输出:10
提示:
1 <= n, m <= 100000
解题思路: 用暴力计算
<1,1>,<1,2>,<1,3>…<m-1,m>,<m,m>是否符合条件,输出符合条件的总数。暴力算<l,1>,<l,2>…<l,m>可以用二分法进行简化,因为如果<l,r1>符合条件的话,那么<l,r1+1>,<l,r2+2>…<l,m>都会符合条件,因此可以用二分法求出边界r,而不用一个一个去遍历。
代码:
import java.io.BufferedReader;
import java.io.IOException;

本文介绍了美团校招中的一道题目,旨在检验两个人的默契程度。游戏规则是根据一个序列,双方各自选择一个整数,满足特定条件即为默契。文章详细解析了解题思路,提出了使用暴力计算结合二分法简化问题的方法,并提供了相关代码实现。
最低0.47元/天 解锁文章
364

被折叠的 条评论
为什么被折叠?



