[SCOI2005]扫雷Mine[SCOI2005]扫雷Mine[SCOI2005]扫雷Mine
Description:
- 相信大家都玩过扫雷的游戏。那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了
,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字
表示和它8连通的格子里面雷的数目。现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,如下图:
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放
方案。
Input Format:
- 第一行为N,第二行有N个数,依次为第二列的格子中的数。(1<= N <= 10000)
Output Format:
- 一个数,即第一列中雷的摆放方案数。
Sample Input:
- 2
1 1
Sample Output:
- 2
TJ:
显然DP
考虑状态转移方程
当前点状态由前一个点的一个状态转移过来,还和后一个点有关系
F[i][0][0]表示i点没雷,i+1点没雷F[i][0][0]表示i点没雷,i+1点没雷F[i][0][0]表示i点没雷,i+1点没雷
F[i][0][1]表示i点没雷,i+1点有雷F[i][0][1]表示i点没雷,i+1点有雷F[i][0][1]表示i点没雷,i+1点有雷
F[i][1][0]表示i点有雷,i+1点没雷F[i][1][0]表示i点有雷,i+1点没雷F[i][1][0]表示i点有雷,i+1点没雷
F[i][1][1]表示i点有雷,i+1点有雷F[i][1][1]表示i点有雷,i+1点有雷F[i][1][1]表示i点有雷,i+1点有雷
DP就完事儿了
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e4+7;
typedef long long int LL;
int n,A[MAXN];
LL f[MAXN][2][2];
int main(){
#ifndef ONLINE_JUDGE
freopen("1088/10.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&A[i]);
f[0][0][0] = f[0][0][1] = 1;
for(int i=1;i<=n;i++){
if(A[i]==0) f[i][0][0] = f[i-1][0][0];
if(A[i]==1){
f[i][0][0] = f[i-1][1][0];
f[i][0][1] = f[i-1][0][0];
f[i][1][0] = f[i-1][0][1];
}
if(A[i]==2){
f[i][0][1] = f[i-1][1][0];
f[i][1][0] = f[i-1][1][1];
f[i][1][1] = f[i-1][0][1];
}
if(A[i]==3) f[i][1][1] = f[i-1][1][1];
}
LL ans = f[n][1][0]+f[n][0][0];
printf("%lld\n",ans);
#ifndef ONLINE_JUDGE
freopen("1088/10.out","r",stdin);
scanf("%lld",&ans);
printf("%lld\n",ans);
#endif
return 0;
}
本文详细解析了一款简化版扫雷游戏的算法实现,该游戏在n×2的棋盘上进行,通过动态规划(DP)解决第一列雷的多种摆放方案问题。文章提供了完整的代码示例,展示了如何根据第二列的数字限制,确定第一列中雷的摆放方案数量。
461

被折叠的 条评论
为什么被折叠?



