Comet OJ - Contest #15 当我们同心在一起

思维 专栏收录该内容
15 篇文章 0 订阅

传送门:https://cometoj.com/contest/79/problem/B
题目描述

平面上有 n 个坐标相异的点,请问当中有多少组非共线的三个点,这三个点的外心也在这 n 个点之中?

输入描述

第一行有一个正整数 n 代表平面上的点数。
接下来有 n 行,当中的第 i 行包含两个整数 xi, yi​ ,代表第 i 个点的坐标是 (xi, yi)。
  1 <= n <= 2000
  109 <= xi,yi <= 109
  若 i != j,则(xi,yi) != (xj,yj)

输出描述

输出一个整数代表答案。

样例1输入:

5
0 0
-2 0
0 2
-1 1
2 0

样例1输出:

2

样例1解释:

此样例的示意图如下:
在这里插入图片描述
  刚开始做这个题目的时候,没想太多,map标记所有点,遍历所有组合,求外心,然后找一下外心的坐标是不是在map里。
  然而,这样时间复杂度不被允许,一直TL,一直爽。
  仔细想一下,外心到圆上的点的距离距离相同,也就是说这三个点的外心到这三个点的距离相同;那样我们可以记录所有点的距离,以及距离出现的次数,假设距离 d 出现的次数是 x,那么 x*(x-1)*(x-2)/6(从 x 个里取 3 个)就是该距离下的组合数目。
  我们可以用 map 记录距离出现的次数,然后用遍历 map 就行了,当然也可以用哈希map,但是 map 没 TL,就用 map 了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<ctime>
#include<utility>
#include<map>
#define ll long long
#define ld long double
#define ull unsigned long long
using namespace std;
const int INF = 0x3f3f3f3f3f;
const double eps = 1e-6;
const int maxn = 10010;
pair<int,int> p[maxn];
#define x first
#define y second

int main(void)
{
    int n;
    ll ans = 0;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d%d",&p[i].x,&p[i].y);
    for(int i=1;i<=n;i++){
        map<ll,ll> mp;
        for(int j=1;j<=n;j++){
            if(i==j)    continue;
            ll dy = p[i].y - p[j].y;
            ll dx = p[i].x - p[j].x;
            ll d = dx*dx + dy*dy;
            mp[d]++;
        }
        map<ll,ll>::iterator it = mp.begin();
        while(it!=mp.end()){
            ll c = it->second;
            ans += c*(c-1)*(c-2)/6;
            it++;
        }
    }
    printf("%lld\n",ans);
    return 0;
}

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值