杨Zz.
码龄6年
关注
提问 私信
  • 博客:388,303
    社区:3
    388,306
    总访问量
  • 15
    原创
  • 1,580,397
    排名
  • 315
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2018-11-19
博客简介:

Flaneur-yz的博客

查看详细资料
个人成就
  • 获得1,034次点赞
  • 内容获得108次评论
  • 获得7,677次收藏
  • 代码片获得11,787次分享
创作历程
  • 1篇
    2020年
  • 14篇
    2019年
成就勋章
TA的专栏
  • 爬虫
  • 算法与程序
    2篇
  • 数据结构
    1篇
  • 机器学习
    12篇
  • 相似度
    1篇
  • 梯度下降
    1篇
  • k-means
    1篇
  • python
    6篇
  • 推荐系统
    2篇
  • 矩阵分解
    1篇
  • KNN
    1篇
  • 回归
    1篇
  • 分类
    2篇
  • 聚类
    1篇
  • ANN
    1篇
  • 协同过滤
  • CNN
    1篇
  • 朴素贝叶斯
    1篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习深度学习神经网络自然语言处理图像处理nlp
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python动态规划解决矩阵连乘

title: K-means算法及python实现date: 2019-07-19tags:机器学习K-meanspythoncategories:机器学习K-meanspython# 前言动态规划        动态规划算法与分治法类似,其基本思想也就是将待求解的问题分解成若干...
原创
发布博客 2020.03.06 ·
1399 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

排序算法数据处理

电脑配置windows10i5-8250U CPU @ 1.60GHZ 1.80GHZ运行内存4GB一、直接插入排序代码void insertsort(table t){ int i,j; for(i=2;i<=t.length;++i) { comptime++; if(t.head[i]<t.head[i-1])...
原创
发布博客 2019.11.24 ·
1025 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

算法与程序

一:算法算法是为了解决某类问题而规定的一个有限的操作序列。即算法是指解决问题的一种方法或一个过程。满足性质:输入:一个算法有零个或多个输入。输出:一个算法有一个或多个输出。确定性:对于每种情况下所执行的操作,在算法中都有确切的规定,不会产生二义性。有穷性:一个算法必须总是在执行有穷步后结束,且每一步都必须在有穷时间内完成。可行性: 算法中的所有操作都可以通过已经实现的基本操作运算...
原创
发布博客 2019.09.06 ·
1348 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

朴素贝叶斯算法

前言        朴素贝叶斯算法是流行的十大算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。**该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。**但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态...
原创
发布博客 2019.08.16 ·
1252 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

卷积神经网络(CNN)

前言CNN,即卷积神经网络,主要用于图像识别,分类。由输入层,卷积层,池化层,全连接层(Affline层),Softmax层叠加而成。卷积神经网络中还有一个非常重要的结构:过滤器,它作用于层与层之间(卷积层与池化层),决定了怎样对数据进行卷积和池化。一、卷积神经网络的网络结构卷积神经网络主要由这几类层构成:输入层、卷积层,ReLU层、池化(Pooling)层和全连接层(全连接层和常规神经网络...
原创
发布博客 2019.08.16 ·
2537 阅读 ·
9 点赞 ·
0 评论 ·
23 收藏

基于协同过滤(CF)算法的推荐系统

随着计算机领域技术的高速发展,电子商务时代的普及,个性化的推荐系统深入生活应用的各个方面。个性化推荐算法是推荐系统中最核心的技术,在很大程度上决定了电子商务推荐系统性能的优劣。而协同过滤推荐是个性化推荐系统应用最为广泛的技术,协同过滤推荐主要分为基于用户的协同过滤推荐、基于项目的协同过滤推荐和基于模型的协同过滤推荐。
原创
发布博客 2019.08.14 ·
5589 阅读 ·
10 点赞 ·
0 评论 ·
105 收藏

人工神经网络(ANN)及python实现

title: python+离散数学→逻辑演算date: 2019-04-02tags:python离散数学categories:python离散数学前言        本篇探讨的是一道逻辑演算推理题。有两种方法,一种是常规的离散数学逻辑演算,另一种则是用python程序来解决。本篇将探究...
原创
发布博客 2019.08.11 ·
27968 阅读 ·
45 点赞 ·
3 评论 ·
329 收藏

浅谈机器学习-分类和聚类的区别

前言        机器学习中有两类的大问题,一个是分类,一个是聚类。在我们的生活中,我们常常没有过多的去区分这两个概念,觉得聚类就是分类,分类也差不多就是聚类,下面,我们就具体来研究下分类与聚类之间在数据挖掘中本质的区别。分类分类有如下几种说法,但表达的意思是相同的。分类(classification):分...
原创
发布博客 2019.08.01 ·
1887 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

浅谈机器学习-回归与分类的区别

前言        机器学习的主要任务便是聚焦于两个问题:分类和回归。本文将浅谈下两者的区别。区别        回归会给出一个具体的结果,例如房价的数据,根据位置、周边、配套等等这些维度,给出一个房价的预测。  ...
原创
发布博客 2019.08.01 ·
8554 阅读 ·
17 点赞 ·
0 评论 ·
40 收藏

K-最近邻分类算法(KNN)及python实现

title: K-最近邻分类算法(KNN)及python实现date: 2019-07-20tags:机器学习KNNpythoncategories:机器学习KNNpython前言KNN算法即K-Nearest Neighbor,也是机器学习十大经典算法之一。前文讲解了K-means算法,今天我们就继续讲KNN算法,两者看起来挺相似的,但区别还是很大的,看完本片文章你...
原创
发布博客 2019.07.29 ·
2759 阅读 ·
2 点赞 ·
0 评论 ·
22 收藏

推荐系统之矩阵分解(MF)及其python实现

前言目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。今天以“用户-项目评分矩阵R(M×N)”说明矩阵分解方式的原理以及python实现。一、矩阵分解1.案例引入有如下R(5,4)的打分矩阵:(“-”表示用户没有打分)其中打分矩阵R(n,m)...
原创
发布博客 2019.07.27 ·
7011 阅读 ·
14 点赞 ·
11 评论 ·
61 收藏

K-means聚类算法原理及python实现

文章目录一.聚类算法二.K-means聚类算法三.K-means算法步骤详解Step1.K值的选择Step2.距离度量2.1.欧式距离2.2.曼哈顿距离2.3.余弦相似度Step3.新质心的计算Step4.是否停止K-means四.K-means算法代码实现1.其伪代码如下2.python实现五.K-means算法补充六.小结一.聚类算法    &nbs...
原创
发布博客 2019.07.26 ·
258775 阅读 ·
851 点赞 ·
85 评论 ·
6640 收藏

梯度下降法的三种形式BGD、SGD、MBGD及python实现

前言梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。为了便于理解,...
原创
发布博客 2019.07.25 ·
3070 阅读 ·
2 点赞 ·
0 评论 ·
34 收藏

多种相似度计算的python实现

前言        在机器学习中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离(欧式距离)、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。大家都是初学者,我认为把公式先写下来,然后再写代码去实现比较好。欧...
原创
发布博客 2019.07.24 ·
2524 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

数据集的划分--训练集、验证集和测试集

训练集:顾名思义指的是用于训练的样本集合,主要用来训练神经网络中的参数.校验集:从字面意思理解即为用于验证模型性能的样本集合.不同神经网络在训练集上训练结束后,通过校验集来比较判断各个模型的性能.这里的不同模型主要是指对应不同超参数的神经网络,也可以指完全不同结构的神经网络.(通常用K折交叉验证法和留一法经行验证)测试集:对于训练完成的神经网络,测试集用于客观的评价神经网络的性能....
原创
发布博客 2019.07.23 ·
60753 阅读 ·
65 点赞 ·
8 评论 ·
418 收藏
加载更多