1亿条数据需要缓存,怎么设计存储案例?

Redis 专栏收录该内容
31 篇文章 2 订阅

1、问题描述

现在有1~2亿条数据需要缓存,如何设计这个存储案例?

单机单台100%不可能,肯定是分布式存储,怎样用redis来实现呢?

2、三种解决方案

2.1 哈希取余分区

image-20220114223321622

  实现起来非常简单,那么缺点呢?

  原来规划好的节点,进行扩容或者缩容就比较麻烦了,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化: H a s h ( k e y ) / 3 Hash(key)/3 Hash(key)/3会变成 H a s h ( k e y ) / ? Hash(key) /? Hash(key)/?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。

某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2.2 一致性哈希算法分区

2.2.1 一致性Hash简介

  一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题某个机器宕机了,分母数量改变了,自然取余数不OK了。

2.2.2 一致性Hash能干嘛?

  提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系

2.2.3 三大步骤

2.2.3.1 构建一致性哈希环

  一致性哈希环

image-20220114224122660

  一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间 [ 0 , 2 32 − 1 ] [0,2^{32}-1] [0,2321],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连 ( 0 = 2 32 ) (0 = 2^{32}) (0=232),这样让它逻辑上形成了一个环形空间。

  它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对 2 32 2^{32} 232 取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为 0 到 2 32 − 1 0到2^{32}-1 02321 (即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到 2 32 − 1 2^{32} -1 2321,也就是说0点左侧的第一个点代表 2 32 − 1 2^{32}-1 2321, 0和 2 32 − 1 2^{32} -1 2321在零点中方向重合,我们把这个由 2 32 2^{32} 232个点组成的圆环称为Hash环。

2.2.3.2 服务器IP节点映射

  将集群中各个IP节点映射到环上的某一个位置。

  将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算**(hash(ip))**,使用IP地址哈希后在环空间的位置如下:

image-20220114224243806

2.2.3.3 key落到服务器的落键规则

  当我们需要存储一个kv键值对时,首先计算keyhash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

  如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

image-20220114224443907

2.2.4 一致性哈希算法的优点

  容错性

  假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。

image-20220114224651572

  扩展性

  数据量增加了,需要增加一台节点NodeXX的位置在AB之间,那收到影响的也就是AX之间的数据,重新把AX的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。

image-20220114224723920

2.2.5 缺点:Hash环的数据倾斜问题

  一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器:

image-20220114224756056

2.2.6 总结

为了在节点数目发生改变时尽可能少的迁移数据

将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点

优点
加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。

缺点
数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

2.3 哈希槽分区

2.3.1 哈希槽简介

1、为什么会出现?

哈希槽实质就是一个数组,数组 [ 0 , 2 14 − 1 ] [0,2^{14} -1] [0,2141]形成hash slot空间。

2、能干什么?

  解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。

image-20220114225026666

  槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。

  哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

3、多少个hash槽?

  一个集群只能有16384个槽,编号0-16383(0- 2 14 − 1 2^{14}-1 2141)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

2.3.2 哈希槽计算

  Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,keyA 、BNode2keyC落在Node3上。

image-20220114225524117

  这里只讲了理论,来自于周阳老师的docker视频,我这里做下整理。

  • 0
    点赞
  • 1
    评论
  • 11
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:撸撸猫 设计师:马嘣嘣 返回首页

打赏作者

别团等shy哥发育

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值