第7章 网络优化与正则化
搭建神经网络的两个难点:(1) 优化问题:首先,神经网络的损失函数非凸,找到全局最优解通常比较困难.其次,深度神经网络的参数非常多,训练数据也比较大,因此也无法使用计算代价很高的二阶优化方法, 而一阶优化方法的训练效率通常比较低.此外,深度神经网络存在梯度消失或爆炸问题,导致基于梯度的优化方法经常失效.(2) 泛化问题:由于深度神经网络的复杂度比较高,并且拟合能力很强,容易在训练集上产生过拟合.因此需要通过一定的正则化方法来改进网络的泛化能力.7.1 网络优化网络优化的两个难点:网络结构多,







