解最短路
复杂度O(n3)
伪码:
for (k = 0; k < n; k++)
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
if (dis[i, j] > dis[i, k] + dis[k, j])
dis[i, j] = dis[i, k] + dis[k, j]
接触Floyd有一段时间了,但是对Floyd的印象就是,只记得它可以求任意两点间的最短距离,有三层循环,也不会用。。。。。
今天总结的时候看到挑战程序设计竞赛中的讲解

看到那个“三维数组”d,当时就懵了。。。。。

然后翻博客也只明白了,如果要让i、j两个点之间的距离变短,可以引入一个中转点k:i—>k—>j,或者多个中转点k1、k2:i—>k1—>k2—>j
直到后面看见啊哈里面的一句话:

对,因为我们存的是邻接矩阵,所如果只能通过一个顶点来中转的话,值需要遍历一下dis数组(dis[i][j]表示顶点i到j的距离,并且d[i][j]的值在循环的过程中不断优化),判断是否可以通过1号点中转来获得更短的路径,执行一下dis[i][j] = min(dis[i][j], dis[i][1] + dis[1][j])
然后的操作(有点像二维数组的01背包,都是在前面的基础上进行操作,当枚举顶点k之前我们已经求得了只有顶点1~k-1作为中转点时的最短路)


直到最后能通过所有点中转就能得到任意两点之间的最短距离。
然后画了个图理解下算法最终是怎么得到最短路径的:

(只看2到3的最短距离,最开始边权都存在dis数组里面,dis[2][3]=103)
k=5时,可以通过5更新dis,dis[2][3]=23+34;k=7时,可以通过7更新dis,就是7到2的dis值+7到3的dis值=3+(12+34),然后我们会发现点7加进来时,就有:2到7的最短路径+7到3的最短路径=2到3的最短路径,而后面这两个最短路径已经在点7加入之前更新完成了;如果还有第8个点可以更新dis[2][3],那么肯定也有:2到8的最短路径+8到3的最短路径=2到3的最短路径,所以这样遍历下去的话我们就可以得到最终的最短路径。
求最短路的代码:Floyd算法(多源最短路)
#include<bits/stdc++.h>
using namespace std;
const int maxn = 105;
const int INF = 0x3f

最低0.47元/天 解锁文章
311

被折叠的 条评论
为什么被折叠?



