求逆元的方法总结、O(n)打表

同余式ax≡c(mod m)的求解:扩展欧几里得——解ax+by = c、ax≡c(mod m)
以下部分整理自—《算法笔记》胡凡、曾磊

什么是逆元

逆元:假设a、b、m是整数,m>1,且有ab≡1(mod m)成立,那么就说a和b互为模m的逆元,一般也记做a≡ 1 b \frac {1} {b} b1(mod m) 或b≡ 1 a \frac {1} {a} a1(mod m) 。通俗地说如果两个整数的乘积模m后等于1,就称它们互为m的逆元。
用处:取模运算:
( a + b ) % m o d = ( a % m o d + b % m o d ) % m o d (a+b)\%mod=(a\%mod+b\%mod)\%mod (a+b)%mod=(a%mod+b%mod)%mod
( a − b ) % m o d = ( a % m o d − b % m o d + m o d ) % m o d (a−b)\%mod=(a\%mod−b\%mod+mod)\%mod (ab)%mod=(a%modb%mod+mod)%mod
( a ∗ b ) % m o d = ( a % m o d ∗ b % m o d ) % m o d (a∗b)\%mod=(a\%mod∗b\%mod)\%mod (ab)%mod=(a%modb%mod)%mod
但是:
( a / b ) % p = ( a % p / b % p ) % p (a/b)\%p=(a\%p/b\%p)\%p (a/b)%p=(a%p/b%p)%p却不成立!!!
例如: ( 6 / 2 ) % 2 = 1 , ( 6 % 2 / 3 % 2 ) % 2 = 0 (6/2) \% 2=1 , (6\%2/3\%2)\%2=0 (6/2)%2=1,(6%2/3%2)%2=0
这时候就需要逆元来计算(b/a)%m。通过找到a模m的逆元x,就有(b/a)%m=(b ∗ * x)%m成立(这里只考虑b%a=0的情况),于是就把除法取模转化为乘法取模
(或者推导如下:(b/a)%m=(b/a)%m ∗ * (a ∗ * x)%m=((b/a) ∗ * ax)%m=(b ∗ * x)%m)

//因为很多时候取模运算中还有除法,先计算除法部分又比较困难,我们就把除法A/B转化为另一个模m后结果相同的数,即A*inv(B),也就引入了逆元

扩展欧几里得

由定义可知,求a模m的逆元,就是求解同余式ax≡1(mod m)。

并且在扩展欧几里得在求解实际问题中,一般把x的最小整数解称为a模m的逆元。而且同余式ax≡1(mod m)要有解,就要满足gcd(a,m)=1,即gcd(a,m)|1。
(gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见)

欧拉定理(费马小定理)

一个关于同余性质的定理,若n,a为正整数,且n,a互质,则:
在这里插入图片描述
φ ( n ) φ(n) φ(n)是1~n的数中与n互质的数的数目,即欧拉函数,我们记为 φ ( n ) φ(n) φ(n)。此函例如 φ ( 8 ) = 4 φ(8)=4 φ(8)=4,因为1,3,5,7均和8互质。
欧拉函数的求解:求欧拉函数值 && 打表O(n)

通过这个定理,我们就可以用aφ(p)-1来表示a关于p的逆元,其中a φ(p)-1可以用快速幂求解
注:欧拉定理求得的逆元结果和上面用扩展欧几里得求得的最小正整数解不一定相等,一个数的逆元不止一个。

另外,若p为素数,此时很明显 φ ( p ) φ(p) φ(p)等于p-1,那么就会满足下面的式子ap-1≡1(mod p),这就是费马小定理

线性求逆元O(n)(打表)

我们要求要求1~p−1的数关于p的逆元

公式: i n v [ i ] = ( p − p / i ) ∗ i n v [ p % i ] % p inv[i]=(p-p/i)*inv[p\%i]\%p inv[i]=(pp/i)inv[p%i]%p

要求 i i i关于 p p p的逆元, p p p可以写成 p = k i + r p=ki+r p=ki+r
k i + r = 0 ( m o d   p ) ki+r=0(mod\ p) ki+r=0(mod p)
为了后面不用考虑负数取模的问题,同时方便结果式的表达,我们把上式写为:
    k i + r = p i ( m o d   p ) ki+r=pi(mod\ p) ki+r=pi(mod p)
r = p i − k i ( m o d   p ) r=pi-ki(mod\ p) r=piki(mod p)
两边同时乘以 i 、 r i、r ir的逆元inv(i)、inv( r r r)得到:
    r ∗ i n v ( i ) ∗ i n v ( r*inv(i)*inv( rinv(i)inv(r ) = ( p i − k i ) ∗ ( i n v ( i ) ∗ i n v ( )=(pi-ki)*(inv(i)*inv( )=(piki)(inv(i)inv(r ) ) ( m o d p ) ))(mod p) ))(modp)
i n v ( i ) = ( p − k ) ∗ i n v ( inv(i)=(p-k)*inv( inv(i)=(pk)inv(r ) ) )
代入 k = p / i , r = p % i k=p/i,r=p\%i k=p/ir=p%i得到:
    i n v ( i ) = ( p − p / i ) ∗ i n v ( p % i ) inv(i)=(p-p/i)*inv(p\%i) inv(i)=(pp/i)inv(p%i)

代码:

//MOD大于n
inv[1]=1;
for(int i=2;i<=n;++i)
  inv[i]=MOD-(long long)MOD/i*inv[MOD%i]%MOD;
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值