2023中兴捧月图像赛道-任意尺度盲超分初赛第三方案 光有伪标签还不够,毕竟单独的伪标签达不到涨点的效果,这时候最关键的是把一个真实图像-超分对和图像-伪标签对组成一个batch进行训练,并给图像-伪标签对给予较低的权重,这样才能保证模型学习到有用的信息。,第一步的右脚就是双线性插值的结果,把双线性插值的结果当作伪标签进行训练,这是最简单也是最直接的方法。
Windows安装pytorch3d(极速版) 选择这个步的话前提是环境配置大体和我差不多,torch1.10.0、cuda11.1安装的pytorch3d 0.6.2,如果版本相差和我不大的基本上,下载完成之后直接将整个文件放到anaconda对应环境的site-package里面久可以了,链接给到这,毕竟花了一天的时间害!这里我给出以下链接,毕竟也是主要参考其他人的分享。
百度菁英班第四周部分答案 为了帮助大家战胜每周霸榜的卷王,贡献自己的一份力量##第三题涉及的是散列函数:除留余数法,暴力的解法就是挨个试,暂时还没想到更便捷的解法,大家可以可以copy过去直接运行:if __name__ == '__main__': a = input() a = int(a) res = [0]*a for i in range(a): temp = input() res[i] = int(temp) flag = True
yolov5的pt权重转tensorrt的trt权重 这里写自定义目录标题yolov5的pt权重转tensorrt的trt权重pt转onnxonnx转trtyolov5的pt权重转tensorrt的trt权重相信如何利用tensorrt进行加速会是大家提高网络速度的关键一环,实际步骤其实也只需 pt/pth 转到 onnx ,再onnx转trt即可。虽然只有两步,但确实会挺折磨人,在这我就浅浅分享一个大致的步骤,以yolov5为例,希望能给大家一点点启发。pt转onnx这一环,yolov5中自带的export.py可以很出色的帮助我们完成转换,只需要执
CeiT阅读笔记 **CeiT【Incorporating Convolution Designs into Visual Transformer】**纯Transformer架构通常需要大量的训练数据和额外的监督才能获得与卷积神经网络CNNs相当的性能,为了克服这些限制,结合CNN在提取低级特征和增强局部性方面的优势以及Transformer在建立远程依赖方面的优势提出了新的卷积增强图像转换器。DeiT引入CNN模型作为teacher,计算负担加重=>映入全新的visual Transformer1、设计了I
全国土壤,地质数据以及降雨数据的下载 全国土壤,地质数据以及降雨数据的下载土壤数据下载地质数据下载降雨数据的下载最近由于暑期竞赛,头疼了好久的数据下载,土壤,地质,降雨这三个数据真的令人头疼,经过多番寻找先将找的资料共享给大家,避免大家再次踩坑!土壤数据下载土壤数据可以通过时空三极环境大数据平台获取:它可以提供的数据种类多,基本上包含了土壤所需的数据:具体的下载步骤不细讲(因为操作并不难),大家只需要注册,申请此类数据即可,由于数据量大,暂时无法上传,所以有需要者但又不会下载,我可以提供下载的方法!地质数据下载关于地质等这类数
利用Smart3D(CC)进行物体建模 利用Smart3D(CC)进行物体建模效果图数据准备拍摄要求软件操作新建工程导入照片Ctrl+A全选将照片一起导入建立模块一路Next到底打开ContextCapture Engine进行空三角计算空三角计算完成瓦片设置提交设置一路Next到底等到计算完成就可以直接打开查看效果图本博文纯属兴趣,如果是利用航片数据进行处理,这篇博文可能不适合你,只适用于建着好玩的人士娱乐一下!数据准备拍摄要求借鉴某公众号的一个图片来说,规范的要求是这样的!直白点,就是尽量360度每隔3°拍一张照片!拍起120张
在SNAP中利用Sen2Cor进行哨兵二号数据预处理(大气校正,辐射校正) 在SNAP中利用Sen2Cor进行哨兵二号数据预处理(大气校正,辐射校正)SNAP中安装Sen2Cor插件第一步:打开SNAPSNAP中安装Sen2Cor插件记得上一篇博文有关于如何处理哨兵二号数据,但是那篇博文我经过实践发现,处理不成功,并且还经常报错,弄得我头疼不已,现在能正确预处理哨兵二号数据后 ,写下此文避免大家后期踩雷,减少大家不必要的麻烦:第一步:打开SNAP1.1点击Tools——Plugins:1.2 Available Plugins——已下载的Sen2Cor——instal
ArcMap进行协同克里金插值分析 ArcMap进行协同克里金插值分析协同克里金插值步骤后期处理协同克里金插值步骤话说网上关于协同克里金插值的原理还是一抓一大把,不过如何在Arcmap上进行操作的内容还是良莠不齐,那么接下来就说一说arcmap进行协同克里金插值的步骤,原理大家就自己看其它博客吧!步骤一:在arcmap上方右键点击Geostatistical Analyst步骤二:点击地统计向导步骤三:在输入数据中导入所需的源数据集步骤四:选择泛克里金,后面就根据大家的需要进行设置了,如果没想法一路下一步到底就可以完成了
哨兵二号数据下载的手把手指导以及12.5米DEM数据下载 哨兵二号数据下载的手把手指导以及12.5米DEM数据下载哨兵二号数据下载网站推荐USGS下载哨兵数据哨兵2号数据预处理12.5米DEM数据下载哨兵二号数据下载网站推荐可以下载哨兵二号数据的网站可供选择的还是很多的,国内的地理空间信息云,国外的欧空局和USGS等等;但是这些网站各有缺点,先拿地理空间数据云说:它含有的哨兵二号数据十分有限,仅局限于2016年12月以前,数据质量不是很好,唯一的优点就是下载速度快,如果要下载2017年及以后的数据在地理空间数据云是下不了的,还是要去欧空局及USGS,同时2
Numpy小部分总结 Numpy小部分总结ndarray数组和标量间的运算索引和切片数组转置和轴对换快速的元素级数组函数数学和统计方法数组文件输入输出线性代数ndarray创建数据最简单的办法是使用array函数,可以把一个列表转换成数组比如:data=[[1,2,3,4,5],[6,7,8,9,10]]array=np.array(data)numpy中的zeros和ones可以创建指定长度或形状的全为...
MATLAB拟合和规划学习笔记 MATLAB学习笔记多项式拟合二级目录三级目录多项式拟合将数据点按多项式的形式进行拟合,使用最小二乘法可以确定多项式的系数。多项式的拟合指令:polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数polyval(p,xi):计算多项式的值示例算法:x=[1 2 3 4 5 6 7 8 9];y=[1.2 1.8 3.3 3.9 5.2 5.8 6.9 7.8 8.7]...
Python手撕排序算法 Python排序算法选择排序(升序):图解:冒泡排序(升序):图解:归并排序(升序):(分而治之)图解:选择排序(升序):每次在若干无序数据中查找最小数,放在无序数据的首位。1.从N个元素的列表中找最小值及其下标,与第一个元素交换2.从第二个元素开始的N-1个元素中找最小值及其下标,与第二个元素交换3.以此类推,N-1轮后即为排好序的数据图解:算法实现:a = [49,38,6...
Python二叉树的实现 Python二叉树的实现什么是二叉树?嵌套列表实现一个二叉树开局直接用列表,一顿操作猛如虎将上述操作分解,进行封装函数二叉树的遍历什么是二叉树?二叉树是由n(n>=0)个结点组成的有限集合,每个结点最多有两个子树的有序树。它或是空集,或者是由一根和称为左,右子树的两个不相交的二叉树组成。嵌套列表实现一个二叉树嵌套列表画出上图所示的二叉树开局直接用列表,一顿操作猛如虎myTree...
Python列表,数组,栈,队列 Python线性数据结构数组栈队列数组python语言中没有提供数组数据类型,通常直接使用列表作为数组核心操作:创建数组,索引访问,索引赋值,迭代遍历array=[]array.append([1,2,3])array.append([4,5,6])array.append([7,8,9])print(array[0])#输出[1,2,3]print(array[0][0])#...
安装Basemap(接地气版) Basemap的安装方法Conda命令pip命令依次安装三个模块geos,pyproj,basemap安装完成Conda命令如果你用 conda 命令,那么下来的要讲的与你没有什么关系了,直接输入conda install basemap就可以进行安装如果在 Python 3.6 版运行这条命令失效的话,就用 conda-forge:conda install basemap -c cond...