推荐https://blog.csdn.net/qq_37656398/article/details/81434277
这几所说的乘法逆元其实是 模反元素(也叫模逆元)
a * a^-1 ≡ 1(mod p)(p为素数)
方法一, 扩展欧几里得求逆元:
扩展欧几里得,可以求逆元的原因:
假设a 与 x互逆(mod p):
a * x %p = 1;
等价于:
ax = py+1;
ax- py = 1;
这样就可以用扩展欧几里得解线性不定方程求逆元了
ll exgcd(ll a, ll b, ll &x, ll &y)// ax+by == gcd(a, b)
{
ll res;
if(b == 0)
{
x = 1;
y = 0;
return a;
}
res = exgcd(b,a%b, x, y);
ll tmp = y;
y = x- a/b*y;
x = tmp;
return res;

本文介绍了如何求解模逆元,即乘法逆元,通过扩展欧几里得算法和费马小定理两种方法进行详细阐述。扩展欧几里得通过解决线性不定方程求得逆元,而费马小定理则提供了在质数模意义下求逆元的快速途径。此外,还提到了地推求阶乘逆元和连续数逆元的方法。
最低0.47元/天 解锁文章
4289

被折叠的 条评论
为什么被折叠?



