假设有这么一个环形链表

第一步
设慢指针走到环的入口处走了K个结点,则快指针走了2K个结点
则有
2K−K=α+nC
2K-K=α + nC
2K−K=α+nC
其中,α是快指针距离环入口处的距离,n是快指针走的圈数,C是圆环的长度。
第二步

此时,满指针在环入口处,快指针在距离环入口α处。
快指针要追上慢指针,那么快指针在下一圈就要比慢指针多走C-α
快指针追上慢指针的时间
2t−t=C−α
2t-t=C-α
2t−t=C−α
所有经过C-α时间,它们相遇。
由于快指针速度是慢指针2倍,那么慢指针走C-α,快指针走2(C-α),此时快慢指针相遇。

第三步,此时慢指针距离环入口处α。我们让快指针回到链表头结点,此时快慢指针速度相同,经过K后,快指针到达入口处
此时慢指针也走了K距离,由第一步可知,
K=α+nC
K=α + nC
K=α+nC
所以此时快慢指针在环入口处相遇。
本文深入探讨了如何利用快慢指针检测链表中是否存在环,并详细解析了算法的三个关键步骤:确定环的入口、计算环的长度以及找到环入口。通过设置双指针,当快指针追上慢指针时,可以确定环的存在,并进一步计算出环的属性。此方法在数据结构和算法领域具有重要意义。
1162

被折叠的 条评论
为什么被折叠?



