数论测试——阶乘除法

数论有一部分的总括


题目描述

给出两个数组 a a a b b b,求 a 1 ! ∗ a 2 ! ∗ a 3 ! ∗ . . . ∗ a n ! b 1 ! ∗ b 2 ! ∗ b 3 ! ∗ . . . ∗ b m ! m o d    T \frac{a_{_1}!*a_{_2}!*a_{_3}!*...*a_{_{n}}!}{b_{_1}!*b_{_2}!*b_{_3}!*...*b_{_{m}}!}\mod T b1!b2!b3!...bm!a1!a2!a3!...an!modT。数据保证答案为整数。

数据范围
n , m , a i , b i ≤ 1 0 5 , T ≤ 1 0 9 n,m,a_i,b_i\leq10^5,T\leq10^9 n,m,ai,bi105,T109

前置芝士——勒让德定理

链接(百度百科is a good guy
简单的再解释一下。假设有一个质数 p p p,然后把 n ! n! n!分解质因数,则质数 p p p的指数为 ∑ k = 1 n ≥ p k [ n p k ] \sum_{k=1}^{n\ge p^k}[\frac{n}{p^k}] k=1npk[pkn]

分析

对于定理而言,是在质数的基础之上建立的,所以——
先筛出质数表。(不要问我什么范围,直接上最大值)

我们可以把分子和分母都化成质数的乘积形式,然后上下约分,再快速幂得出结果。
所以,关键是如何转化。

为了方便说明,先定义两个概念:
p r i pr_i pri:第 i i i个质数 \quad\quad\quad t o t tot tot 1 — — 1 0 5 1——10^5 1105范围内的质数个数。

以下内容只是对分子的分析,因为分子分母的分解过程十分相似。

首先,可以较为轻松地想出一个暴力算法——把每一个数遍历一下再分解,可以看一下大体的程序:
∑ k = 1 n ∑ i = 1 t o t ∑ j = 1 n ≥ p j [ a k p r i j ] \sum^{n}_{k=1}\sum^{tot}_{i=1}\sum^{n\ge p^j}_{j=1}[\frac{a_{_k}}{{pr_{_i}}^j}] k=1ni=1totj=1npj[prijak]
不过,我们可以知道, t o t = 9592 tot=9592 tot=9592,所以这个程序前两个循环就爆了。


分析定理,再看一看循化——后面两个是必要的,肯定不可以省,所以就只能省第一个。

该怎么省呢?假设把后面两个先写上,那么我们可以确定 p r i j {pr_i}^j prij
可以考虑一下对除法的分析。

因为除法的结果取整是会有分段性的,例如连续自然数除以8就是每8个结果增加1,所以可以把数组 a a a弄成这样的分段形式,就可以用桶来分段储存。

如果我们枚举一下商,那么我们可以把商对应的范围求出来。
令商为 k k k,那么满足 [ x p r i j ] = k [\frac{x}{{pr_{_i}}^j}]=k [prijx]=k x x x在区间 [ p r i j ∗ k , p r i j ∗ ( x + 1 ) ) [{pr_{_i}}^j*k,{pr_{_i}}^j*(x+1)) [prijk,prij(x+1))之间

为什么?因为那个分段性。除以 p r i j {pr_{_i}}^j prij就是每 p r i j {pr_{_i}}^j prij分一段,于是可以得出这个结果。

所以接下来就是求在 [ p r i j ∗ k , p r i j ∗ ( x + 1 ) ) [{pr_{_i}}^j*k,{pr_{_i}}^j*(x+1)) [prijk,prij(x+1))之间的数的个数了。该怎么求呢?因为 a i , b i a_i,b_i ai,bi的范围较小,所以可以使用桶和前缀和 O ( 1 ) O(1) O(1)算出答案。(线段树and树状数组???区间求和不是我们的生意吗???)因为这个不需要动态操作,所以可以直接使用前缀和实现 O ( 1 ) O(1) O(1)查询。

最后,直接把每一个质数的指数加起来(幂的乘法),对分母处理就减去指数就好了。
因为质数都是互质的,而且答案是整数,所以只能形成整除,因此每一个质数之间互相约掉才能有整数,所以不会存在负幂的情况,就可以直接来了。

代码实现

#include<map>
#include<set>
#include<list>
#include<queue>
#include<deque>
#include<stack>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cctype>
#include<string>
#include<sstream>
#include<fstream>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
#define reg register
#define ONLINE_JUDGE
#ifdef ONLINE_JUDGE
char buf[1 << 21], *p1 = buf, *p2 = buf;
inline int getc() { return p1 == p2 && (++p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++; }
#define getchar getc
#endif
template<typename T>
inline T read() {
    T a = 0; char f = 1, c = getchar();
    while(c < '0' || c > '9') {
        if(c == -1) return -1;
        if(c == '-') f = -f;
        c = getchar();
    }
    while('0' <= c && c <= '9') {
        a = (a << 3) + (a << 1) +(c ^ 48);
        c = getchar();
    }
    return a;
}
template<class T>
inline int write(T x) {
    if(x < 0) {
        putchar('-');
        x = (~x) + 1;
    }
    if(x / 10) write(x / 10);
    return putchar(x % 10 | 48);
}
template<class T>
inline int write(T x, char c) {
    return write(x) && putchar(c);
}
template<class T>
inline T Min(T a, T b) { return a < b ? a : b; }
template<class T>
inline T Max(T a, T b) { return a > b ? a : b; }

const int MAXN = 100001;
int n = read<int>(), m = read<int>(), T = read<int>();
int pr[9593], tot; bool vis[MAXN];
long long c[MAXN], w[9593];
long long M = -1;
long long ans = 1, down = 1;
inline void Euler(int n)
{
    for(reg int i = 2; i <= n; i++) {
        if (!vis[i])
            pr[++tot] = i;
        for(reg int j = 1; j <= tot && i * pr[j] <= n; j++) {
            vis[i * pr[j]] = 1;
            if (i % pr[j] == 0)
                break;
        }
    }
}
inline void solve(int n, long long f) {
    memset(c, 0, sizeof c);
    for(reg int i = 1; i <= n; i++) {
        long long a = read<long long>();
        c[a]++;
        M = Max(a, M);
    }
    for(reg int i = 2; i <= M; i++)
        c[i] += c[i - 1];
    for(reg int i = 1; i <= tot; i++) {
        for(reg long long j = pr[i]; j <= M; j *= pr[i]) {
            for(reg int k = 1; j * k <= M; k++) {
                long long l = j * k, r = Min(j * (k + 1) - 1, M);
                w[i] += f * (c[r] - c[l - 1]) * k;
            }
        }
    }
}
inline long long piow(long long a, long long b) {
    long long ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % T;
        a = a * a % T;
        b >>= 1;
    }
    return ans;
}
int main() {
    Euler(MAXN - 1);
    solve(n, 1);
    solve(m, -1);
    for(reg int i = 1; i <= tot; i++)
        ans = ans * piow(pr[i], w[i]) % T;
    write(ans);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值