题目描述
给出两个数组 a a a和 b b b,求 a 1 ! ∗ a 2 ! ∗ a 3 ! ∗ . . . ∗ a n ! b 1 ! ∗ b 2 ! ∗ b 3 ! ∗ . . . ∗ b m ! m o d    T \frac{a_{_1}!*a_{_2}!*a_{_3}!*...*a_{_{n}}!}{b_{_1}!*b_{_2}!*b_{_3}!*...*b_{_{m}}!}\mod T b1!∗b2!∗b3!∗...∗bm!a1!∗a2!∗a3!∗...∗an!modT。数据保证答案为整数。
数据范围
n
,
m
,
a
i
,
b
i
≤
1
0
5
,
T
≤
1
0
9
n,m,a_i,b_i\leq10^5,T\leq10^9
n,m,ai,bi≤105,T≤109
前置芝士——勒让德定理
链接(百度百科is a good guy)
简单的再解释一下。假设有一个质数
p
p
p,然后把
n
!
n!
n!分解质因数,则质数
p
p
p的指数为
∑
k
=
1
n
≥
p
k
[
n
p
k
]
\sum_{k=1}^{n\ge p^k}[\frac{n}{p^k}]
k=1∑n≥pk[pkn]
分析
对于定理而言,是在质数的基础之上建立的,所以——
先筛出质数表。(不要问我什么范围,直接上最大值)
我们可以把分子和分母都化成质数的乘积形式,然后上下约分,再快速幂得出结果。
所以,关键是如何转化。
为了方便说明,先定义两个概念:
p
r
i
pr_i
pri:第
i
i
i个质数
\quad\quad\quad
t
o
t
tot
tot:
1
—
—
1
0
5
1——10^5
1——105范围内的质数个数。
以下内容只是对分子的分析,因为分子分母的分解过程十分相似。
首先,可以较为轻松地想出一个暴力算法——把每一个数遍历一下再分解,可以看一下大体的程序:
∑
k
=
1
n
∑
i
=
1
t
o
t
∑
j
=
1
n
≥
p
j
[
a
k
p
r
i
j
]
\sum^{n}_{k=1}\sum^{tot}_{i=1}\sum^{n\ge p^j}_{j=1}[\frac{a_{_k}}{{pr_{_i}}^j}]
k=1∑ni=1∑totj=1∑n≥pj[prijak]
不过,我们可以知道,
t
o
t
=
9592
tot=9592
tot=9592,所以这个程序前两个循环就爆了。
分析定理,再看一看循化——后面两个是必要的,肯定不可以省,所以就只能省第一个。
该怎么省呢?假设把后面两个先写上,那么我们可以确定
p
r
i
j
{pr_i}^j
prij。
可以考虑一下对除法的分析。
因为除法的结果取整是会有分段性的,例如连续自然数除以8就是每8个结果增加1,所以可以把数组 a a a弄成这样的分段形式,就可以用桶来分段储存。
如果我们枚举一下商,那么我们可以把商对应的范围求出来。
令商为
k
k
k,那么满足
[
x
p
r
i
j
]
=
k
[\frac{x}{{pr_{_i}}^j}]=k
[prijx]=k的
x
x
x在区间
[
p
r
i
j
∗
k
,
p
r
i
j
∗
(
x
+
1
)
)
[{pr_{_i}}^j*k,{pr_{_i}}^j*(x+1))
[prij∗k,prij∗(x+1))之间
为什么?因为那个分段性。除以 p r i j {pr_{_i}}^j prij就是每 p r i j {pr_{_i}}^j prij分一段,于是可以得出这个结果。
所以接下来就是求在 [ p r i j ∗ k , p r i j ∗ ( x + 1 ) ) [{pr_{_i}}^j*k,{pr_{_i}}^j*(x+1)) [prij∗k,prij∗(x+1))之间的数的个数了。该怎么求呢?因为 a i , b i a_i,b_i ai,bi的范围较小,所以可以使用桶和前缀和 O ( 1 ) O(1) O(1)算出答案。(线段树and树状数组???区间求和不是我们的生意吗???)因为这个不需要动态操作,所以可以直接使用前缀和实现 O ( 1 ) O(1) O(1)查询。
最后,直接把每一个质数的指数加起来(幂的乘法),对分母处理就减去指数就好了。
因为质数都是互质的,而且答案是整数,所以只能形成整除,因此每一个质数之间互相约掉才能有整数,所以不会存在负幂的情况,就可以直接来了。
代码实现
#include<map>
#include<set>
#include<list>
#include<queue>
#include<deque>
#include<stack>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cctype>
#include<string>
#include<sstream>
#include<fstream>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
#define reg register
#define ONLINE_JUDGE
#ifdef ONLINE_JUDGE
char buf[1 << 21], *p1 = buf, *p2 = buf;
inline int getc() { return p1 == p2 && (++p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++; }
#define getchar getc
#endif
template<typename T>
inline T read() {
T a = 0; char f = 1, c = getchar();
while(c < '0' || c > '9') {
if(c == -1) return -1;
if(c == '-') f = -f;
c = getchar();
}
while('0' <= c && c <= '9') {
a = (a << 3) + (a << 1) +(c ^ 48);
c = getchar();
}
return a;
}
template<class T>
inline int write(T x) {
if(x < 0) {
putchar('-');
x = (~x) + 1;
}
if(x / 10) write(x / 10);
return putchar(x % 10 | 48);
}
template<class T>
inline int write(T x, char c) {
return write(x) && putchar(c);
}
template<class T>
inline T Min(T a, T b) { return a < b ? a : b; }
template<class T>
inline T Max(T a, T b) { return a > b ? a : b; }
const int MAXN = 100001;
int n = read<int>(), m = read<int>(), T = read<int>();
int pr[9593], tot; bool vis[MAXN];
long long c[MAXN], w[9593];
long long M = -1;
long long ans = 1, down = 1;
inline void Euler(int n)
{
for(reg int i = 2; i <= n; i++) {
if (!vis[i])
pr[++tot] = i;
for(reg int j = 1; j <= tot && i * pr[j] <= n; j++) {
vis[i * pr[j]] = 1;
if (i % pr[j] == 0)
break;
}
}
}
inline void solve(int n, long long f) {
memset(c, 0, sizeof c);
for(reg int i = 1; i <= n; i++) {
long long a = read<long long>();
c[a]++;
M = Max(a, M);
}
for(reg int i = 2; i <= M; i++)
c[i] += c[i - 1];
for(reg int i = 1; i <= tot; i++) {
for(reg long long j = pr[i]; j <= M; j *= pr[i]) {
for(reg int k = 1; j * k <= M; k++) {
long long l = j * k, r = Min(j * (k + 1) - 1, M);
w[i] += f * (c[r] - c[l - 1]) * k;
}
}
}
}
inline long long piow(long long a, long long b) {
long long ans = 1;
while(b) {
if(b & 1) ans = ans * a % T;
a = a * a % T;
b >>= 1;
}
return ans;
}
int main() {
Euler(MAXN - 1);
solve(n, 1);
solve(m, -1);
for(reg int i = 1; i <= tot; i++)
ans = ans * piow(pr[i], w[i]) % T;
write(ans);
}