基于卷积神经网络-长短期记忆网络CNN-LSTM区间预测,CNN-LSTM核密度估计下置信区间预测。CNN-LSTM-KDE区间预测。多变量区间预测,单变量也可做请私聊。区间预测(区间覆盖率P

该文描述了数据预处理的过程,包括读取Excel数据、划分训练集和测试集、数据打乱及归一化。此外,提到了智能算法在预测模型中的应用,重点在于构建输入特征和目标变量的矩阵,并进行归一化处理,为后续的建模和预测做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

res = xlsread('数据集.xlsx');
%%
num_size = 0.8;% 训练集占数据集比例
dataran = 0; %不打乱数据
%%
    %%  数据分析
    outdim = 1;                                  % 最后一列为输出
    num_samples = size(res, 1);                  % 样本个数
    num_train_s = round(num_size * num_samples); % 训练集样本个数
    AA1 = res(1:num_train_s,:);
    AA2 = res(num_train_s+1:end-1,:);
    AA3 = res(end,:);
    clear res;
    if dataran == 1 
        AA1 = AA1(randperm(size(AA1, 1)), :);         % 打乱数据集
        AA2 = AA2(randperm(size(AA2, 1)), :);         % 打乱数据集
    end
    res=[AA1;AA2;AA3];
    f_ = size(res, 2) - outdim;                  % 输入特征维度
    %%  划分训练集和测试集
    P_train = res(1: num_train_s, 1: f_)';
    T_train = res(1: num_train_s, end)';
    M = size(P_train, 2);

    P_test = res(num_train_s + 1: end, 1: f_)';
    T_test = res(num_train_s + 1: end, end)';
    N = size(P_test, 2);
    %%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  创建元胞或向量,长度为训练集大小;
XrTrain = cell(size(p_train,2),1);
YrTrain = zeros(size(t_train,2),1);
for i=1:size(p_train,2)
    XrTrain{i,1} = p_train(:,i);
    YrTrain(i,1) = t_train(:,i);
end

智能算法及其模型预测

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值