- 博客(40)
- 资源 (1)
- 收藏
- 关注
原创 论文笔记 -- Contrastive Clustering(对比聚类)
文章目录Contrastive Clustering文章介绍问题背景拟解决问题联合优化的应用主要贡献相关工作对比学习深度聚类实例级和聚类级的含义提出的方法模型结构PCB模块ICH模块CCH模块算法流程损失构建实验数据集介绍实验结果类簇演化过程数据增强的消融实验两种对比方式的消融实验不同数据增强方式的消融实验个人观点Contrastive Clustering文章介绍**出处:**AAAI-2021摘要:本文提出了一种称为对比聚类(CC)的单阶段在线聚类方法,该方法采用实例级和聚类级的对比学习。具体来
2022-03-21 22:24:39
12822
3
原创 论文笔记 -- SOFT: Softmax-free Transformer with Linear Complexity
ViT通过图像块序列化+自注意力机制将不同CV任务性能往前推了一把。然而,自注意力机制会带来更高的计算复杂度与内存占用。在NLP领域已有不同的方案尝试采用线性复杂度对自注意力进行近似。然而,本文的深入分析表明:NLP中的近似方案在CV中缺乏理论支撑或者无效。进一步分析了其局限性根因:**softmax self-attention** 。具体来说,传统自注意力通过计算token之间的点乘并归一化得到自注意力。softmax操作会对后续的线性近似带来极大挑战。基于该发现,本文首次提出了SOFT(**softm
2022-01-12 12:23:44
3369
原创 Linux安装Anaconda shell脚本
脚本内容可以直接 下载 ,只需1积分,或者使用如下内容自己创建#!/bin/bashPREFIX=$(cd `dirname $0`; pwd)/Anacondaanaconda_version="Anaconda3-5.3.0-Linux-x86_64.sh"echo "Create folder !"if [ -d $PREFIX ]; then #rm -rf $PREFIX/* echo "Install to $PREFIX !"else mkdir -
2021-10-19 16:54:47
2030
原创 论文笔记 -- A Transformer-based Framework for Multivariate Time Series Representation Learning
文章目录A Transformer-based Framework for Multivariate Time Series Representation LearningRelated workMotivationContributionModelUnsupervised (self-supervised) pre-trainingRegression and classificationExperimentA Transformer-based Framework for Multivariate T
2021-09-29 09:30:11
6258
1
转载 Markdown编辑语法
文章目录Markdown 简明语法手册1. 斜体和粗体2. 分级标题3. 外链接4. 无序列表5. 有序列表6. 文字引用7. 行内代码块8. 代码块9. 插入图像Cmd Markdown 高阶语法手册1. 内容目录2. 标签分类3. 删除线4. 注脚5. LaTeX 公式6. 加强的代码块7. 流程图示例更多语法参考:[流程图语法参考](http://adrai.github.io/flowchart.js/)8. 序列图示例 1示例 2更多语法参考:[序列图语法参考](http://bramp.gi
2021-09-10 20:07:11
1322
转载 Markdown公式符号
上下标 算式markdowna0,aprea0,aprea0,aprea_0, a_{pre}a0,a[0]a0,a[0]a0,a[0]a^0, a^{[0]}括号 算式markdown(, )(, )[, ][, ]⟨,⟩⟨,⟩⟨,⟩\lang,...
2021-09-10 17:51:14
1377
原创 论文笔记 -- Learning Representations for Time Series Clustering
文章目录Learning Representations for Time Series ClusteringMotivationContributionModelDTCR工作DTCR流程输入输出变量定义算法流程Equipment数据集介绍Baseline方法对比试验消融实验各项损失的贡献学习表示的过程鲁棒性分析超参数分析主要方法参考文献Learning Representations for Time Series Clustering原文:Learning Representations for T
2021-08-13 17:49:49
2962
2
转载 修改Linux系统最大TCP连接数限制
修改Linux系统最大TCP/UDP连接数限制前提:拥有Root权限系统的默认配置是足以满足日常使用的TCP/UDP连接的,但是在进行高并发的网络编程时,超出连接个数会遇到最大打开文件数限制报错、无法创建新连接(超出最大进程数)、系统资源分配报错1、修改最大用户进程数和最大文件数限制ulimit 的作用ulimit:显示(或设置)用户可以使用的资源的限制(limit),这限制分为软限制(当前限制)和硬限制(上限),其中硬限制是软限制的上限值,应用程序在运行过程中使用的系统资源不超过相应的软限制,任
2021-07-06 21:31:07
8038
1
原创 修改centos7系统用户最大线程数和最大文件数限制
修改centos7系统用户最大线程数和最大文件数限制需要注意,不同版本的Linux系统所对应的修改方法不同ulimit 的作用ulimit:显示(或设置)用户可以使用的资源的限制(limit),这限制分为软限制(当前限制)和硬限制(上限),其中硬限制是软限制的上限值,应用程序在运行过程中使用的系统资源不超过相应的软限制,任何的超越都导致进程的终止。-> ulimit -a # -a 列出所有当前资源极限core file size (blocks,
2021-07-06 09:38:24
4304
1
原创 k-means、k-means++、kernel k-means算法介绍及在datasets-load_iris数据集上的实现
文章目录k-means、k-means++、kernel k-means算法介绍及在datasets-load_iris数据集实现完整实验代码k-means公式数据集处理选取初始类中心单次k-means运算兰德指数对聚类结果评判运行结果正确结果每一轮迭代的结果优点缺点k-means++初始类中心选取运行结果每一轮迭代的结果kernel k-means原理坐标变换方式实验结果代码k-means、k-means++、kernel k-means算法介绍及在datasets-load_iris数据集实现k-m
2021-05-19 17:33:51
4597
5
原创 EM算法解决含隐变量的掷硬币问题
数据挖掘十大经典算法–EM算法(详解+代码)适用场景:用于含有隐变量的概率模型参数的极大似然估计,或者极大后验概率估计先对隐变量和极大似然估计做出解释考虑这样两个问题:1、抛一枚硬币,假设正面向上的概率是θ\thetaθ,先对其进行了10次试验,结果为8次正面,2次反面。2、有三枚硬币A,B,C,其正面向上的概率分别为π\piπ,ppp,qqq,现进行10次实验,先掷硬币A,若A为正面,则掷出B,否者掷出C,记录最终的掷硬币结果,现已知实验的观测结果为6次正面,4次反面。背景知识隐变量可以看
2021-05-11 21:48:32
893
1
原创 Markdown公式编辑语法(表)
Markdown公式编辑语法(表)描述语法描述语法描述语法α\alphaα\alphaβ\betaβ\betaγ\gammaγ\gammaδ\deltaδ\deltaϵ\epsilonϵ\epsilonζ\zetaζ\zetaη\etaη\etaθ\thetaθ\thetaι\iotaι\iotaκ\kappaκ\kappaλ\lambdaλ\lambdaμ\muμ\muν\nuν\nuξ\xiξ\xiο\
2021-05-11 09:33:10
212
原创 机器学习中常用的距离度量方法
文章目录机器学习中常用的距离度量方法欧氏距离(Euclidean Distance)曼哈顿距离(Manhattan Distance)切比雪夫距离(Chebyshev distance)闵可夫斯基距离(Minkowski distance)标准化欧氏距离 (Standardized Euclidean distance )马氏距离(Mahalanobis Distance)巴氏距离(Bhattacharyya Distance)汉明距离(Hamming distance)相关系数( Correlation
2021-03-06 16:51:00
794
翻译 聚类算法的性能度量方法
文章目录聚类算法性能度量一、兰德指数优点缺点数学公式二、基于互信息的度量优点缺点数学公式三、同质性,完整性和 V-measure优点缺点数学公式四、Fowlkes-Mallows 得分优点缺点五、 Silhouette 系数(轮廓系数)优点缺点六、Calinski-Harabaz 指数优点缺点数学公式七、Davies-Bouldin 指数优点缺点数学公式八、Contingency Matrix(可能性矩阵)优点缺点九、Pair Confusion Matrix(配对混淆矩阵)聚类算法性能度量该博客是基于
2021-03-04 10:06:07
5351
1
原创 模型无关的时间序列度量方法及特征
文章目录模型无关的时间序列度量方法及特征模型无关的方法(Model-free approaches)常用方法介绍闵可夫斯基距离(Minkowski distance)弗雷歇距离(Fréchet distance)动态时间规整DTW(Dynamic time warping distance)一个自适应的涵盖了价值和行为上的接近度的不同的指标(An adaptive dissimilarity index covering both proximity on values and on behavior)皮尔
2021-03-01 20:34:07
1624
原创 时间序列间距离的影响因素
文章目录时间序列间距离的影响因素1、噪声图像表示简介引起噪声数据的原因噪声数据的影响噪声数据处理方法回归异常值检测2、振幅平移图像表示引起振幅平移的原因振幅平移在聚类上的应用3、振幅伸缩图像表示振幅伸缩的应用4、时间轴伸缩图像表示时间轴伸缩的作用5、线性漂移图像表示6、不连续(数据丢失)图像表示数据丢失的产生数据丢失的处理时间序列间距离的影响因素时间序列的相似性度量是衡量两个序列的相似程度的方法。两个序列是否相似,主要看他们的变化趋势是否一致。由于时间序列数据的复杂性特点,实际上不可能存在两条完全相同的
2021-02-25 16:38:38
1748
原创 Supervisor进程管理与开机自动启动
简介Supervisor是一个客户端/服务器系统,允许其用户控制类似UNIX的操作系统上的许多进程。Supervisor已经过测试,可以运行在Linux(Ubuntu),Mac OS X(10.4、10.5、10.6)和Solaris(对于Intel为10)和FreeBSD 6.1上。在大多数UNIX系统上,它可能会正常工作。Supervisor完全不会在任何Windows版本下运行。Supervisor旨在在Python 3版本3.4或更高版本以及Python 2版本2.7上工作。该过程在Ubu
2021-01-26 13:52:05
3824
原创 CCF认证模拟- 201909-2-小明种苹果(续)-python
题目测试用例44 74 -7 -12 -55 73 -8 -6 59 -45 76 -5 -10 60 -25 80 -6 -15 59 054 10 0 9 04 10 -2 7 02 10 04 10 -3 5 04 10 -1 8 0思路明天写代码N = int(input())list_apple_tree = []for i in range(N): list_tmp = list(map(int, input().split())) l
2020-11-23 22:28:06
180
原创 pytorch入门操作
pytorch入门–Tensor基础:https://blog.csdn.net/qq_43923588/article/details/107973551pytorch入门–Tensor常用操作:https://blog.csdn.net/qq_43923588/article/details/107974097pytorch入门–索引与切片:https://blog.csdn.net/qq_43923588/article/details/107974187pytorch入门–维度变换:https
2020-08-14 16:29:50
252
原创 pytorch入门--矩阵统计属性
本篇pytorch的矩阵统计属性展示,包含:norm 范数prod 累乘max/min/argmax/argmindim/keepdimkthvalue/topk常用运算符使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行矩阵统计属性import torchimport numpy as npimport sysloc = sys._getframe()_ = '\n''''norm范数这里并不是norma
2020-08-14 16:00:52
845
1
原创 pytorch入门--矩阵基本运算
本篇pytorch的矩阵基本运算进行展示,包含:add/subtract/multiply/dividematmulpow 次方sqrt/rsqrt 次方根近似运算上下界操作使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行矩阵基本运算import torchimport numpy as npimport sysloc = sys._getframe()_ = '\n''''add/subtract/m
2020-08-14 15:57:22
4431
原创 pytorch入门--拆分与拼接
本篇pytorch的tensor拆分与拼接进行展示,包含:catstacksplitchunk使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行拆分与拼接import torchimport numpy as npimport sysloc = sys._getframe()_ = '\n''''cat第一个参数为一个list,其中包含所有的要用于合并的tensor第二个参数决定在哪一个维度上进行合并,其余的
2020-08-14 15:53:15
310
原创 pytorch入门--维度变换
本篇pytorch的唯独变换进行展示,包含:view/reshapesqueeze/unsqueezeexpand/repeattranspose/t/permuteBroadcast使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行维度变换import torchimport numpy as npimport sysloc = sys._getframe()_ = '\n''''view/reshape改变te
2020-08-14 15:46:57
336
原创 pytorch入门--索引与切片
本篇对torch的tensor索引与切片进行展示使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行索引与切片import torchimport numpy as npimport sysloc = sys._getframe()_ = '\n''''给定维度进行索引'''a = torch.rand(4, 3, 8, 8)print(loc.f_lineno, _, a[0].shape, _, a[0, 0].shap
2020-08-13 10:37:42
703
原创 pytorch入门--Tensor常用操作
本篇对tensor的一些常用操作进行展示使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行tensor常用操作import torchimport numpy as npimport sysloc = sys._getframe()'''用numpy生成数据,之后导入torch使用GPU进行加速运算'''a = np.array([2, 3.3])aa = torch.from_numpy(a)a1 = np.array(
2020-08-13 10:34:13
385
原创 pytorch入门--Tensor基础
本篇对tensor的一些基础操作进行展示使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行数据类型及张量import torchimport numpy as npimport sysloc = sys._getframe()'''常用数据类型'''a = torch.randn(2, 3)# 输出数据类型print(loc.f_lineno, '\n', a.type())print(loc.f_lineno, '\n'
2020-08-13 10:26:13
286
原创 Ubuntu使用Grafana搭建监控平台展示OpenTSDB数据
文章目录Ubuntu使用Grafana搭建监控平台展示OpenTSDB数据1、环境配置1.1版本要求1.2Grafana安装1.3Hbase和OpenTSDB2、Grafana的使用2.1为Grafana配置OpenTSDB数据源2.2展示数据源2.3对数据进行操作3、Java为OpenTSDB生成数据1.生成数据的格式2.数据生成代码3.数据写入代码Ubuntu使用Grafana搭建监控平台展示OpenTSDB数据1、环境配置1.1版本要求Hbase 2.2.5OpenTSDB 2.4.0
2020-08-01 18:06:48
709
原创 机器学习-sklearn.datasets-load_iris数据集-回归算法和K近邻法(KNN)
学习机器学习一个月了,开始尝试做一些简单的问题,整体代码在文章最后这里写目录标题1、 load_iris数据集2、数据集处理3、线性回归3.1 回归训练3.2 回归测试3.3 对输入点进行判断4、K近邻(KNN)算法4.1 距离计算4.2 计算准确率4.3 k近邻法判断输入点类别5、绘制函数图像6、运行结果展示7、完整代码1、 load_iris数据集Iris数据集在模式识别研究领域应该是最知名的数据集了,有很多文章都用到这个数据集。这个数据集里一共包括150行记录,其中前四列为花萼长度,花萼宽度,花
2020-07-29 20:10:49
45281
10
原创 CCF认证模拟-201903-2-二十四点-python
题目思路首先在看到这道题的时候,第一印象应该是要用 栈 去实现,同时还感觉需要用到 指针但是在python中没有指针的概念,为了便于理解,我在代码中设置了一个数字列表,姑且叫他 ”指针数列“ ,以便模拟指针的作用当然这道题也可以用数据结构中后缀表达式的概念去理解下面是一个后缀表达式的例子,也可以作为一种思路(不过我没有去写这种思路的代码):在本题中没有使用 小括号 ,无形中降低了难度我的解题思路如下:先乘除后加减 这个是核心思路先进行乘除运算的思路如下:这里应该理解成一个 栈
2020-07-04 20:55:37
256
原创 CCF认证模拟-201812-2-小明放学-python
题目思路首先应该明确红绿灯的变换顺序:其次是对各种灯对应的等待时间的判断:到达路口时,当遇到绿灯,则直接通行到达路口时,当遇到红灯,则等待相对应的时间到达路口时,当遇到绿灯,则等待 黄灯相对应的时间,并且需要等待一个红灯的时间 才能通行之后,因为题目中所给的是还没有出发前的红绿灯状况,所以需要推算出到达路口时的红绿灯状态(在代码中批注)最后还有一个需要区分的点是,当小明从出发到遇到红绿灯时所用的时间还不够红绿灯变换一次的时间,此时所需等待的时间和其他情况也有区分代码示例代
2020-07-04 19:42:11
251
原创 CCF认证模拟-201612-2-工资计算-python-python存储机制问题
问题思路本题主要分为两种思路:一种为正向,即一直使用循环语句和判断语句,通过计算所有情况最后得出结果另一种是根据到手工资去推算税前所得工资下面的示例是第二种方法,第一种方法比较常见代码示例T = int(input())S = 0t = 0a = [T-83500+22495, T-58500+13745, T-38500+7745, T-12500+1245, T-8000+345, T-5000+45, T-3500, T]b = [0.45, 0.35, 0.3, 0.25,
2020-07-03 19:52:58
208
原创 CCF认证模拟-201403-2-窗口-python
题目思路将所有窗口信息放入一个list,规定最后放入的窗口信息为最上层窗口,依次向前为前面窗口再定义一个相同的list1,使之前的list进行窗口变换,list1用于查看顶层窗口的索引值若一个点不在最上层窗口,则进入下一层,以此类推,直到点位于某一窗口此时相当于将这一窗口与原来最顶层的窗口进行了换位此处需要理解题目中所给定的 剩余窗口的层次顺序不变 所以是直接与最顶层换位置此题目并不是一个一个窗口去进行尝试,直到找到位于最上层的窗口如果题目是这样,那么就需要将正确层次的 前几层 进
2020-07-03 14:33:29
213
1
原创 Flume数据传输及多端口转发
文章目录Flume发送数据测试1、概述1.1项目内容1.2使用工具1.3整体思路2、测试过程2.1数据生成2.2配置端口标识和端口号2.3解析获取到的数据2.4flume配置文件3、测试结果Flume发送数据测试1、概述1.1项目内容通过OPC-DA协议获取硬件数据,将数据进行json格式化,通过flume存入opentsdb1.2使用工具flume-1.9.0jdk-1.8.0安装包:[apache-flume-1.9.0-bin.tar.gz]: http://flume.apache
2020-07-03 13:58:47
672
原创 CCF认证模拟-201409-2-画图-python
题目首先说一下在看到这道题以后我的思路:抛开程序本身的问题有两种思路:一种思路是先计算全面积,之后减去重复部分另一种是一个格子一个格子的数错误代码示例(思路1)首先放第二种思路的代码,这段是错误示例a = int(input())b = []for i in range(a): c = input().split() b.append(c)area = 0for i in b: area = area + abs(int(i[2])-int(i[0]))
2020-07-03 10:27:42
192
原创 数值分析--python--二分法
一、简介对于区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。二、代码示例# !/usr/bin/env python# coding=utf-8import sysimport matplotlib.pyplot as plt# 给定一个函数f(x)import numpy as npdef function_1(x): fun = x*x-
2020-06-26 17:42:18
887
原创 Android studio改名、改图标、去除活动栏、顶部显示适配主题
一、改app名Android studio原始布局的设定全部在manifest中,对应app名为android:label="@string/app_name"只需到res->values->strings中更改相应字段即可<resources> <string name="app_name">app名</string></...
2020-01-09 19:27:32
657
原创 通过Wifi控制Zigbee网络中执行器节点
如果要看具体的操作过程和思路,请耐心看完;如果只是要实现控制功能,可以直接看第三部分python代码一、基本介绍陵阳爱普的物联网实验箱的ARM板上自带Zigbee、蓝牙、Wifi、和IPV6的服务器,并对用户提供了3个接口:/cgi-bin/topology.cgi 为服务器拓扑结构、网络数据的返回接口/cgi-bin/node.cgi 为传感器数据和节点信息的返回接口/cgi-bi...
2019-08-31 20:14:00
955
原创 Zigbee组网及基于WiFi的传感器数据获取
一、基本说明中国北方某高校16级课程设计硬件部分设计的基本思路:本次课设使用的是开发箱的Zigbee模块(屏幕左面的6个模块)和arm板(右上角屏幕做WiFi数据传输)实现Zigbee组建网状网络,采集传感器数据并通过arm板外接usb无线网卡将数据传到pc,最后对url中的json格式传感器数据进行解析得到我们想要的数据并存入数据库。二、Zigbee组建网状网络使用IAR对对应模块烧写...
2019-08-24 14:11:34
3890
1
原创 数值分析--python--LU分解法
**1、LU分解法介绍**LU分解在本质上是高斯消元法的一种表达形式。实质上是将A通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下三角矩阵。这正是所谓的杜尔里特算法(Doolittle algorithm):从下至上地对矩阵A做初等行变换,将对角线左下方的元素变成零,然后再证明这些行变换的效果等同于左乘一系列单位下三角矩阵,这一系列单位下三角矩阵的乘积的逆就是L矩阵,它也是一个单位...
2019-08-03 19:54:17
2117
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人