机器学习笔记4_浅谈机器学习原理(宝可梦、数码宝贝分类器)

本文基于李宏毅的机器学习课程,通过构建宝可梦和数码宝贝分类器,深入浅出地阐述了机器学习的基本原理。首先,利用线条数量作为特征定义函数并设定损失函数;接着,探讨训练过程中的数据局限性和理想状态的接近程度,通过数学推导分析如何影响训练效果。最后,讨论了模型选择的数量与训练数据质量之间的平衡,提出深度学习作为兼顾两者的方法。
摘要由CSDN通过智能技术生成

本文是李宏毅机器学习的笔记,这是第四节,通过宝可梦、数码宝贝分类器简单的介绍了机器学习的原理。

1. 宝可梦、数码宝贝分类器流程

由于宝可梦和数码宝贝画风不同,数码宝贝的画风更为复杂,所以使用线条数量h来简单的定义一个函数

然后定义损失函数

2. 训练细节

然后我们进行训练,但是训练的时候会有一个问题,就是用于训练的数据不是所有的数据,只是部分数据,所以我们希望理想和现实尽可能的相近。

我们希望理想和现实尽可能的相近,那么只要对于任意的h,有 ∣ L ( h , D t r a i n ) − L ( h , D a l l ) ∣ < = σ 2 |L(h, D_{train})-L(h, D_{all})|<=\frac\sigma2 L(h,Dtrain)L(h,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值