图相似度计算:SimGNN: A Neural Network Approach to Fast Graph Similarity Computation

本文介绍了SimGNN模型,一种用于快速计算图相似度的深度学习方法。SimGNN通过图嵌入、神经张量网络和节点对比较来计算图的相似度得分,适用于网络搜索和数据挖掘。尽管模型不考虑边特征,但在多项实验中展示了高效和准确的性能。
摘要由CSDN通过智能技术生成

一点点都不想学习😔,就把看的图相似度文献的笔记发下吧,有需要的随便瞅瞅吧(CSDN是没办法改字体大小么)

1.文献相关链接*
文献标题:SimGNN: A Neural Network Approach to Fast Graph Similarity Computation
来源:WSDM2018( 网络搜索和数据挖掘国际会议)
论文链接:
https://arxiv.org/abs/1808.05689
代码链接:
https://paperswithcode.com/paper/graph-edit-distance-computation-via-graph#code

2.Main idea:输入为一对图,输出为两个图的相似度分数(有监督学习方式)

3.网络结构:给定一对图,将图进行向量表示,然后再根据图对应的向量来计算相似度,即graph embedding.同时考虑了两个图节点之间的相关性或差异性
在这里插入图片描述
1)Graph embedding
首先对每个节点进行one -hot encoding(相同节点类型的编码相同),然后利用GCN(3层或者说是聚合了节点的一阶邻居的特征)进行邻居聚合,最后利用注意力机制将节点嵌入合并为图嵌入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>