一点点都不想学习😔,就把看的图相似度文献的笔记发下吧,有需要的随便瞅瞅吧(CSDN是没办法改字体大小么)
1.文献相关链接:*
文献标题:SimGNN: A Neural Network Approach to Fast Graph Similarity Computation
来源:WSDM2018( 网络搜索和数据挖掘国际会议)
论文链接:
https://arxiv.org/abs/1808.05689
代码链接:
https://paperswithcode.com/paper/graph-edit-distance-computation-via-graph#code
2.Main idea:输入为一对图,输出为两个图的相似度分数(有监督学习方式)
3.网络结构:给定一对图,将图进行向量表示,然后再根据图对应的向量来计算相似度,即graph embedding.同时考虑了两个图节点之间的相关性或差异性

1)Graph embedding
首先对每个节点进行one -hot encoding(相同节点类型的编码相同),然后利用GCN(3层或者说是聚合了节点的一阶邻居的特征)进行邻居聚合,最后利用注意力机制将节点嵌入合并为图嵌入

本文介绍了SimGNN模型,一种用于快速计算图相似度的深度学习方法。SimGNN通过图嵌入、神经张量网络和节点对比较来计算图的相似度得分,适用于网络搜索和数据挖掘。尽管模型不考虑边特征,但在多项实验中展示了高效和准确的性能。
最低0.47元/天 解锁文章
1184

被折叠的 条评论
为什么被折叠?



