计算机基础必备

本文是转载及原创内容共同构成,转载部分都有相应链接及版权声明

进制的转换


版权声明:本文为CSDN博主「duguxingfeng」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/duguxingfeng/article/details/88909458点击跳转


  • 一个二进制位称为比特bit(位)
  • byte(字节)
  • 一个16进制是4个二进制位,则两个16进制是8位也就是一个字节
  • 1byte=8bit

1.十进制、二进制、八进制、十六进制对应数值如下表。

进制换算表
十进制二进制八进制十六进制
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

2.进制之间转换的规律(二进制不考虑符号位)
  2.1二进制向十进制转换的时候,可以从二进制右侧往左进行推算,具体步骤如下:

二进制转十进制
二进制位00000000
对应十进制2n次方1286432168421

① 二进制位对应的数字乘以十进制对应数

②将相乘所得数字相加即可得十进制树

  例如:二进制 101010,从右往左推算 0×1+1×2+0×4+1×8+0×16+1×32=42
在这里插入图片描述

2.2二进制向八进制转换的时候,可以从二进制右侧往左进行推算3位一组,具体步骤如下:
在这里插入图片描述

  例如:二进制 1101010,从右往左 可分为3组,不足一组左侧补0

001 101 010
在这里插入图片描述
2.3二进制向十六进制转换的时候,可以从二进制右侧往左进行推算4位一组,具体步骤如下:
在这里插入图片描述
例如:二进制 1101010,从右往左 可分为3组,不足一组左侧补0

                                              0110     1010

在这里插入图片描述

以上运算可互为逆运算

十进制转八进制、十六进制时,可采用短除法,也可先转换为二进制再分组,转换为八进制和十六进制。

所有进制之间转换都可先进行二进制转换,再进行其他运算,比如八进制转十六进制
在这里插入图片描述

版权声明:本文为CSDN博主「duguxingfeng」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/duguxingfeng/article/details/88909458
————————————————


本部分为原创:


二 → 十 八 、 十 六 → 十 } → 按 权 对 位 展 开 相 加 \left.\begin{matrix}二\to 十\\八、十六\to 十\end{matrix}\right\}\to按权对位展开相加 }


十 → 二 十 → 八 、 十 六 } → \left.\begin{matrix}十\to 二\\十\to 八、十六\end{matrix}\right\}\to } { 整 数 连 除 , 取 余 逆 序 小 数 连 乘 , 取 整 顺 序 ( 小 数 部 分 ) \begin{cases}整数连除,取余逆序\\ 小数连乘,取整顺序(小数部分) \end{cases} {,()


二 ⟷ 八 ( 3 位 一 组 ) 二 ⟷ 十 六 ( 4 位 一 组 ) } → 分 组 对 位 转 化 , 顺 序 不 变 \left.\begin{matrix}二\longleftrightarrow 八(3位一组)\\二\longleftrightarrow 十六(4位一组)\end{matrix}\right\}\to分组对位转化,顺序不变 (3)(4)}(读分组后对应的十进制数,不足补0,整数由后向前,小数由前向后)
八进制转十六:8先转2再转16
10转8:10先转2再转8

例题
在这里插入图片描述


二进制的减法计算

本部分转载跳转https://blog.csdn.net/qq_32832803/article/details/82286073

101001-011010=001111 运算步骤如下:
在这里插入图片描述

在运算过程中,从右往左逐位进行计算。
1-0=1;
0不够减1,向前借1后加2变成2;2-1=1;
0在上一步被借1所以减为-1,-1不够减0,向前借一后加2变成1;1-0=1;
1在上一步被借1所以减为0,0不够减1,向前借一后加2变成2;2-1=1;
0在上一步被借1所以减为-1,-1不够减1,向前借一后加2变成1;1-1=0;
1在上一步被借1所以减为0,0-0=0.
由此推出:数不够减就向前借1位,然后该数加2.

可见二进制减法是向前借1后加2
————————————————
版权声明:本文为CSDN博主「撼沧」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_32832803/article/details/82286073


本部分为原创

内存单位及转换

Byte字节,bit位
1Byte(B)=8bit,1KB=1024B(字节),1MB=1024KB,1GB=1024MB,1TB=1024GB
210B即为1K
211B为2K
212B为4K
213B为8K
214B为16K
220B为1MB
221B为2MB
222B为4MB
230B为1GB
240B为1TB等依此规律

b/s(bps)、kb/s、Mb/s、Gb/s
k=103、M=106、G=109

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值