可乐大牛
码龄6年
关注
提问 私信
  • 博客:582,563
    社区:2
    582,565
    总访问量
  • 284
    原创
  • 711,845
    排名
  • 334
    粉丝
  • 4
    铁粉

个人简介:不懈努力最终必会有所收获!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-12-19
博客简介:

可乐大牛的博客

博客描述:
可乐大牛的博客描述 哈哈哈
查看详细资料
个人成就
  • 获得518次点赞
  • 内容获得286次评论
  • 获得3,247次收藏
  • 代码片获得22,862次分享
创作历程
  • 9篇
    2023年
  • 109篇
    2022年
  • 91篇
    2021年
  • 98篇
    2020年
成就勋章
TA的专栏
  • 论文学习
    68篇
  • 前端
    3篇
  • python
    25篇
  • 机器学习
    9篇
  • 深度学习
    9篇
  • java
    18篇
  • 算法题
    75篇
  • 大数据
    27篇
  • 杂谈
    38篇
  • 工具与软件
    24篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【3D目标检测】Is Pseudo-Lidar needed for Monocular 3D Object detection?

如何引入获得空间信息如何增强深度估计效果密集深度估计子网络大规模数据集下的深度估计预训练。
原创
发布博客 2023.03.12 ·
1017 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

【信息安全】基于TCP协议半连接的端口扫描程序实现

其中,TCP协议半连接端口扫描技术利用TCP协议的特性,通过简单的三次握手,就可以实现端口的扫描,这样可以更安全的探测到目标主机的端口信息,并不会影响到目标主机的安全。此外,端口扫描还可以帮助网络管理员查找未被识别的服务器端口,确定可以利用的资源,以及查找未授权的连接;在程序中总共包含两次数据包的发送过程,第一次是发送探测数据包,也就是发送SYN数据包与目标主机进行第一次握手,第二次是在收到目标主机的响应数据包时,发现其中包含SYN和ACK标志位,则再次发送一个RST数据包给目标主机从而停止连接的建立。
原创
发布博客 2023.03.05 ·
1873 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

【3D目标检测】WEAKM3D: TOWARDS WEAKLY SUPERVISEDMONOCULAR 3D OBJECT DETECTION

核心问题:如何以2D检测框对应的目标点云作为监督信号进行弱监督学习,训练一个单目3D目标检测网络如何最小化预测的3D边界框与目标点云之间的几何距离如何缓解几何对齐带来的对齐模糊问题。对齐模糊问题指的是有些目标通过激光雷达只能获取它一个表面的点,不知道该通过3D边界框的哪个表面去和他对齐点云分布不均匀,稀疏点但是重要的点应该比稠密的点产生更大的损失为了得到3D边界框,预测大量的参数,并且这些参数相互耦合,如位置、尺寸、偏航角。
原创
发布博客 2023.02.23 ·
958 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

【3D目标检测】Boosting Monocular 3D Object Detection with Object-Centric Auxiliary Depth Supervision

本文是基于单目图像的3D目标检测方法。研究的问题:object-centric auxiliary depth loss,并且使用原始点云而非标注作为监督信号(旨在减少深度误差,尤其是前景区域的深度误差)(更改了深度回归的目标)引入了目标深度分解以及深度不确定性,前者指的是更改了深度回归的目标,后者指的是输出深度分布而非深度值,考虑到了定位的不确定性。
原创
发布博客 2023.02.16 ·
714 阅读 ·
1 点赞 ·
2 评论 ·
0 收藏

【信息安全】seed-labs实验-Firewall Exploration Lab

本实验主要就是基于LKM和Netfilter实现简单的防火墙,重点是后者。路由器是有两个ip的,一个是外网ip,一个是内网ip每一次做完实验,都要做好收尾工作(比如:模块装入之后,要记得移除;iptables命令设置完规则之后,要把对应规则删掉)
原创
发布博客 2023.02.16 ·
4289 阅读 ·
7 点赞 ·
0 评论 ·
38 收藏

【3D目标检测】Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving

本文是基于单目图像的3D目标检测方法。能否借助立体图像检测算法提高单目图像检测的效果如何实现右侧图像的生成受启发于伪点云,提出了伪立体图像的概念,将图像转换成立体图像,然后应用立体图像的检测算法提出两种右侧图像生成的方法,分别是图像级别生成和特征级别生成(基于视差的动态卷积方法)提出一个观点:学习深度感知的特征有利于提高单目检测的性能,比如作者这边的深度估计以及深度损失。
原创
发布博客 2023.02.14 ·
1040 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

【3D目标检测】基于伪雷达点云的单目3D目标检测方法研宄

本文是基于单目图像的3D目标检测方法,是西安电子科技大学的郭鑫宇学长的硕士学位论文。【2021】【单目图像的3D目标检测方法】
原创
发布博客 2023.02.10 ·
1570 阅读 ·
0 点赞 ·
1 评论 ·
15 收藏

【信息安全】RSA Public-Key Encryption and Signature Lab

Bob收到来自Alice的消息M = “Launch a missile.”,其签名为s。我们知道Alice的公钥是(e, n),请验证该签名是否确实是Alice的。假设in的签名已损坏,签名的最后一个字节从2F更改为3F,即只有一个比特的更改。涉及到的参数有:模数n,公钥指数e,私钥指数d,我们将(e,n)称为公钥,(d,n) 称为私钥。公钥秘钥与上一个任务相同,让我们解密以下密文C,并将其转换为纯ASCII字符串。使用公钥(e,n)对明文M进行加密,并且使用私钥(d,n)验证加密的正确性。
原创
发布博客 2023.02.07 ·
1308 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

【3D目标检测】Delving into Localization Errors for Monocular 3D Object Detection

本文是基于单目图像的3D目标检测方法。核心问题:如何提高基于单目图像的3D目标检测的效果。作者量化了每个子任务的整体影响,观察到以下现象观察一:定位误差是制约目标检测性能的关键因素,当然还有深度估计以及3D中心的2D投影。观察二:随着深度的增加,检测性能显著下降(对于很近的物体,性能也很差),甚至超过一定距离几乎不可能准确检测。我们将这些几乎无法准确检测的远距离样本称为坏样本,这些样本会降低模型对于易于检测样本的表示,危害整体性能观察三:尺寸估计也是制约目标检测性能的重要因素。
原创
发布博客 2023.01.11 ·
1003 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【3D目标检测】SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation

本文是基于单目图像的3D目标检测方法。以往的3D目标检测方法中都会有一个子网络,通过2D目标检测产生2D候选框,然后通过2D候选框去学习3D信息或者得到伪点云送入基于点云的网络中。而这种基于2D目标检测的方法会存在一些问题,如冗余。因为3D信息+内参矩阵可以直接拿到2D信息。引入噪声。添加了2D目标检测子网络之后,整个流程就分阶段了,前一阶段会引入持续的噪声,导致后一阶段学习3D特征变得困难。而为了解决这个问题,又有了很多的研究,但不管怎么说,多阶段的方法都会导致性能的降低。
原创
发布博客 2022.12.28 ·
998 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【信息安全】seed-labs实验-Secret-Key Encryption Lab

然后我们还有一个已知的排序结果words_frequency(这个是百度搜到的字母出现频率),这两个排序结果的对应关系我们就认为是对照表了,接着使用这个对照表翻译密文得到明文out.txt。单表替换密码(将明文中的字母按照对照表映射成密文),会将明文中的统计规律带到密文中,如明文中出现最多的是A,则密文中出现最多的就是A在对照表下的密文。比如我想将DF修改成EF,做法就是选中EF(是鼠标拖动,让ED块变红),然后右键复制,选中DF右键删除,然后再右键黏贴。
原创
发布博客 2022.12.27 ·
4343 阅读 ·
9 点赞 ·
2 评论 ·
24 收藏

【目标检测】Objects as Points

本文是一个anchor-free的目标检测算法。如何更好地将目标检测问题建模为关键点检测问题一个简单高效的目标检测方法CenterNet。简单:彻底的端到端(不需要NMS后处理),整体流程就是关键点预测+相关参数回归,高效:不需要预先设置anchor,速度精度都超过了基于anchor的方法。
原创
发布博客 2022.12.23 ·
715 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【3D目标检测】Orthographic Feature Transform for Monocular 3D Object Detection

本文是基于单目图像的3D目标检测方法。在图像表示中,物体的比例会随着深度的变化而变化;物体的外观随着视点的不同而不同;物体的距离(无论是物体相对于坐标系的绝对距离还是物体之间的相对距离)无法直接表示,且后者是没有意义的,会随着深度的变化而变化的。作者认为应该在3D空间中进行检测,因此提出了一种可微的正交特征变换方式,将图像特征变换成正交的鸟瞰图特征,这种表示下物体的比例是均匀的,外观是与视点无关的,距离是有意义的。
原创
发布博客 2022.12.20 ·
873 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【3D目标检测】Categorical Depth Distribution Network for Monocular 3D Object Detection

本文是基于单目图像的3D目标检测方法。以往的深度信息学习方法(无论是显示学习还是隐式学习)都存在一些问题,会导致后面边界框定位困难以往基于基于深度的方法将深度估计和目标检测分开训练以往基于网格的方法生成的鸟瞰图表示质量不高为每个像素预测一组深度分布,能够得到高质量的鸟瞰图,使得边界框定位更加准确实现了端到端的训练,也就是单个网络中同时进行深度估计和目标检测没有中间表示的方法,也就是基于2D特征+各种约束实现检测,如2D-3D约束,关键点约束等。没有显示的使用深度信息,定位性能相对较差。
原创
发布博客 2022.12.15 ·
1018 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【3D目标检测】Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation

本文是基于双目图像的3D目标检测方法。(双目方法所以看的不太仔细)以往的工作估计整张视差图,计算量大且无法使用类别具体的先验信息训练中视差标注不足提出一个实例级别的视差估计网络,只在ROI上进行视差估计使用统计形状模型而非激光雷达生成密集的视差标注。
原创
发布博客 2022.12.12 ·
615 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【信息安全】seed-labs实验-TCP/IP Attack Lab

文件删除成功,并且客户端的光标被锁死,无法输入命令(这个是因为客户端的终端失去了正确的ack与seq,既无法发出信息,也无法接收信息,甚至无法退出。在wireshark上可以找到最新的报文信息,最新的是客户端发给服务器的,那我们模拟客户端再发一条,只需要改变序列号就好了。在wireshark上可以找到最新的报文信息,最新的是客户端发给服务器的,那我们模拟客户端再发一条,只需要改变序列号就好了。攻击脚本:py文件(攻击速度慢,因为是虚拟机,半连接会自动重置,要是攻击的速度赶不上重置的速度就实验失败了)
原创
发布博客 2022.12.10 ·
3917 阅读 ·
6 点赞 ·
0 评论 ·
42 收藏

【3D目标检测】Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for AD

本文是基于图像的3D目标检测方法。感觉上和伪点云原论文没什么不同,只是说基于伪点云的方法将深度图转换成伪点云之后直接使用了已有的工作,而作者自己设计了一个流程,这个流程中将颜色信息嵌入到了伪点云中。主要分为两个阶段,3D数据生成以及3D边界框预测
原创
发布博客 2022.12.07 ·
1052 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【zeriotier】win10安装zeriotier的辛酸泪

实验室的服务器是使用zeriotier组网的,因此我们想用服务器只能装zeriotier这个软件,但是在安装这个软件实在是经历了太长的时间了。其实zeriotier使用的流程很简答,师兄们已经做完了前面的铺垫工作,我们只需要加入就好了。具体流程就是安装zeriotier软件,点击Join Network,输入师兄给的network id,然后师兄再同意我的加入,就ok了。一个ok的证明就是我能够ping通服务器,ping通局域网内的其他机子。应该是下面这样的,我有一个自己的Node ID,在接入局域网后
原创
发布博客 2022.12.05 ·
12362 阅读 ·
5 点赞 ·
13 评论 ·
9 收藏

【docker】配置深度学习环境

问题与解决容器启动后添加端口映射一般添加端口自映射需要在生成容器的时候用-p指定映射规则,但如果当时忘记指定了或者后期需要新的映射规则,就需要这一步了将现有的容器打包成镜像,然后在使用新的镜像运行容器时重新指定要映射的端口,比较暴力直接修改当前容器的配置文件首先是在hostconfig.json中添加如下:然后在config.v2.json中添加如下两处:
原创
发布博客 2022.12.04 ·
2339 阅读 ·
4 点赞 ·
2 评论 ·
13 收藏

【3D目标检测】学习过的论文整理

本文将我所学习过的3D目标检测论文按照自己的理解进行分类,并介绍每篇论文研究的问题与采用的方法,格式如下:【年份】【模型简写】【论文名称】【笔记链接】问题1问题2方法1方法2。
原创
发布博客 2022.12.03 ·
2580 阅读 ·
4 点赞 ·
0 评论 ·
25 收藏
加载更多