递归
属于分治思想。
递归在于反复调用自身函数,每次把问题缩小为子问题,直到缩小到可以直接得到边界数据的结果,然后再往上返回,并在途中求出对应的解。
递归的逻辑要求:
①递归边界,即问题分解的尽头;
②递归式,将原问题分解成若干子问题的某种手段。
全排列
1~n这些整数所能形成的全部排列,有时需要实现按字典序从小到大排列。
问题:输出1~n这n个数字的全排列
分析:按照分治、递归的思想,该问题可以分为若干个子问题,即”输出以1开头的全排列“,”输出以2开头的全排列“等等…
①我们可以设定一个数组p用来存放当前的排列,其中每一个元素为一位数字;
②设定一个哈希表hash_table,用来标识1~n中的某一整数x已经存在数组p中,即已经用于排列。
解法:
按顺序往p的1~n位里面填数字。
假设p[1]~p[index-1]都已经填好了,准备填p[index],如果此时x没有填入p[1]~p[index-1],即对应hash_table[x]=false,那么把x填入p[index],同时要记录此时的hash_table[x]=true。
然后开始处理p的第index+1位,即开始递归。当递归完成后,将hash_table[x]还原为false。
确定递归边界,当index=n+1时说明p的1~n位都已经填好,表示生成了一个排列。
完整代码如下:
#include <iostream>
using namespace std
最低0.47元/天 解锁文章
538

被折叠的 条评论
为什么被折叠?



