SCANet(Self-Calibrated Attention Network)是一个用于图像去雾的生成对抗网络(GAN),它包括生成器(Generator)和判别器(Discriminator)两个主要部分。生成器用于生成去雾后的图像,而判别器用于区分真实图像和生成图像。(文章设计了一个生成器。)
生成器部分:
· FastDeconv:快速去卷积模块,用于预处理输入图像。
- 注意力模块:包括通道注意力(Channel Attention, CA)和空间注意力(Spatial Attention, SA)。
- 残差块:Residual Block,用于学习输入特征的残差映射。
- 下采样和上采样:通过卷积和转置卷积实现。
判别器部分:由一系列卷积层和激活函数组成。