SCANet代码解读

        SCANet(Self-Calibrated Attention Network)是一个用于图像去雾的生成对抗网络(GAN),它包括生成器(Generator)和判别器(Discriminator)两个主要部分。生成器用于生成去雾后的图像,而判别器用于区分真实图像和生成图像。(文章设计了一个生成器。)

         生成器部分:

   · FastDeconv:快速去卷积模块,用于预处理输入图像。

  • 注意力模块:包括通道注意力(Channel Attention, CA)和空间注意力(Spatial Attention, SA)。
  • 残差块:Residual Block,用于学习输入特征的残差映射。
  • 下采样和上采样:通过卷积和转置卷积实现。

                       判别器部分:由一系列卷积层和激活函数组成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值