这里写目录标题
一、解决问题
YOLO小目标检测效果不好的一个原因是因为小目标样本的尺寸较小,而yolov8的下采样倍数比较大,较深的特征图很难学习到小目标的特征信息,因此提出增加小目标检测层对较浅特征图与深特征图拼接后进行检测。加入小目标检测层,可以让网络更加关注小目标的检测,提高检测效果。这个方式的实现十分简单有效,只需要修改yolov8的模型文件yaml就可以增加小目标检测层,但是在增加检测层后,带来的问题就是计算量增加,导致推理检测速度降低。不过对于小目标,确实有很好的改善,修改yaml文件,需要修改特征融合网络。
二、YOLOv8改进代码
# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc:

针对YOLO系列在小目标检测上的不足,YOLOv8提出增加小目标检测层,结合浅层特征图进行检测,改善小目标识别效果。虽然计算量增加导致推理速度下降,但对小目标检测有显著提升。在训练时,通过调整yaml文件的n/s/m/l/x参数,可自适应调节网络结构。
订阅专栏 解锁全文
4773

被折叠的 条评论
为什么被折叠?



