11. 数仓开发之ADS层

流量主题

各渠道流量统计

建表语句


数据装载


查看数据


路径分析

用户路径分析 : 用户在 APP 或网站中的访问路径 , 对访问路径进行分析

用户访问路径的可视化 ( 桑基图 ) 。可以真实还原用户的访问路径,如 : 页面跳转和页面访问次序

桑基图需要提供每种页面跳转的次数,每个跳转表示 : source / target

  • source : 跳转起始页面
  • target : 跳转终到页面

桑基图 :

在这里插入图片描述

建表语句


数据装载


查看数据


用户主题

用户变动统计

该需求包括两个指标,分别为流失用户数和回流用户数

建表语句


数据装载


查看分区


查看数据


用户留存率

留存分析一般包含新增留存和活跃留存分析。

新增留存分析是分析某天的新增用户中,有多少人有后续的活跃行为。活跃留存分析是分析某天的活跃用户中,有多少人有后续的活跃行为。

留存分析是衡量产品对用户价值高低的重要指标。

此处要求统计新增留存率,新增留存率具体是指留存用户数与新增用户数的比值,例如2020-06-14新增100个用户,1日之后(2020-06-15)这100人中有80个人活跃了,那2020-06-14的1日留存数则为80,2020-06-14的1日留存率则为80%。

统计每天的1至7日留存率 :

在这里插入图片描述

建表语句


数据装载


查看分区


查看数据


用户新增活跃统计

建表语句


数据装载


查看分区


查看数据


用户行为漏斗分析

漏斗分析是一个数据分析模型,它能够科学反映一个业务过程从起点到终点各阶段用户转化情况。由于其能将各阶段环节都展示出来,故哪个阶段存在问题,就能一目了然。

在这里插入图片描述

建表语句


数据装载


查看分区


查看数据


新增交易用户统计

建表语句


数据装载


查看分区


查看数据


商品主题

最近7/30日各品牌复购率

建表语句


数据装载


查看分区


查看数据


各品牌商品交易统计

建表语句


数据装载


查看分区


查看数据


各品类商品交易统计

建表语句


数据装载


查看分区


查看数据


各分类商品购物车存量Top10

建表语句


数据装载


查看分区


查看数据


交易主题

交易综合统计

建表语句


数据装载


查看分区


查看数据


各省份交易统计

建表语句


数据装载


查看分区


查看数据


优惠券主题

最近30天发布的优惠券的补贴率

建表语句


数据装载


查看分区


查看数据


活动主题

最近30天发布的活动的补贴率

建表语句


数据装载


查看分区


查看数据


数据装载脚本

/home/cpu/bin 目录下创建 dws_to_ads.sh

vim dws_to_ads.sh

内容 :

#!/bin/bash

APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi

ads_activity_stats="
insert overwrite table ${APP}.ads_activity_stats
select * from ${APP}.ads_activity_stats
union
select
    '$do_date' dt,
    activity_id,
    activity_name,
    start_date,
    cast(activity_reduce_amount_30d/original_amount_30d as decimal(16,2))
from ${APP}.dws_trade_activity_order_nd
where dt='$do_date';
"
ads_coupon_stats="
insert overwrite table ${APP}.ads_coupon_stats
select * from ${APP}.ads_coupon_stats
union
select
    '$do_date' dt,
    coupon_id,
    coupon_name,
    start_date,
    coupon_rule,
    cast(coupon_reduce_amount_30d/original_amount_30d as decimal(16,2))
from ${APP}.dws_trade_coupon_order_nd
where dt='$do_date';

"
ads_new_buyer_stats="
insert overwrite table ${APP}.ads_new_buyer_stats
select * from ${APP}.ads_new_buyer_stats
union
select
    '$do_date',
    odr.recent_days,
    new_order_user_count,
    new_payment_user_count
from
(
    select
        recent_days,
        sum(if(order_date_first>=date_add('$do_date',-recent_days+1),1,0)) new_order_user_count
    from ${APP}.dws_trade_user_order_td lateral view explode(array(1,7,30)) tmp as recent_days
    where dt='$do_date'
    group by recent_days
)odr
join
(
    select
        recent_days,
        sum(if(payment_date_first>=date_add('$do_date',-recent_days+1),1,0)) new_payment_user_count
    from ${APP}.dws_trade_user_payment_td lateral view explode(array(1,7,30)) tmp as recent_days
    where dt='$do_date'
    group by recent_days
)pay
on odr.recent_days=pay.recent_days;
"
ads_order_by_province="
insert overwrite table ${APP}.ads_order_by_province
select * from ${APP}.ads_order_by_province
union
select
    '$do_date' dt,
    1 recent_days,
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_total_amount_1d
from ${APP}.dws_trade_province_order_1d
where dt='$do_date'
union
select
    '$do_date' dt,
    recent_days,
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    sum(order_count),
    sum(order_total_amount)
from
(
    select
        recent_days,
        province_id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2,
        case recent_days
            when 7 then order_count_7d
            when 30 then order_count_30d
        end order_count,
        case recent_days
            when 7 then order_total_amount_7d
            when 30 then order_total_amount_30d
        end order_total_amount
    from ${APP}.dws_trade_province_order_nd lateral view explode(array(7,30)) tmp as recent_days
    where dt='$do_date'
)t1
group by recent_days,province_id,province_name,area_code,iso_code,iso_3166_2;
"

ads_page_path="
insert overwrite table ${APP}.ads_page_path
select * from ${APP}.ads_page_path
union
select
    '$do_date' dt,
    recent_days,
    source,
    nvl(target,'null'),
    count(*) path_count
from
(
    select
        recent_days,
        concat('step-',rn,':',page_id) source,
        concat('step-',rn+1,':',next_page_id) target
    from
    (
        select
            recent_days,
            page_id,
            lead(page_id,1,null) over(partition by session_id,recent_days) next_page_id,
            row_number() over (partition by session_id,recent_days order by view_time) rn
        from ${APP}.dwd_traffic_page_view_inc lateral view explode(array(1,7,30)) tmp as recent_days
        where dt>=date_add('$do_date',-recent_days+1)
    )t1
)t2
group by recent_days,source,target;
"
ads_repeat_purchase_by_tm="
insert overwrite table ${APP}.ads_repeat_purchase_by_tm
select * from ${APP}.ads_repeat_purchase_by_tm
union
select
    '$do_date' dt,
    recent_days,
    tm_id,
    tm_name,
    cast(sum(if(order_count>=2,1,0))/sum(if(order_count>=1,1,0)) as decimal(16,2))
from
(
    select
        '$do_date' dt,
        recent_days,
        user_id,
        tm_id,
        tm_name,
        sum(order_count) order_count
    from
    (
        select
            recent_days,
            user_id,
            tm_id,
            tm_name,
            case recent_days
                when 7 then order_count_7d
                when 30 then order_count_30d
            end order_count
        from ${APP}.dws_trade_user_sku_order_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days,user_id,tm_id,tm_name
)t2
group by recent_days,tm_id,tm_name;
"
ads_sku_cart_num_top3_by_cate="
insert overwrite table ${APP}.ads_sku_cart_num_top3_by_cate
select * from ${APP}.ads_sku_cart_num_top3_by_cate
union
select
    '$do_date' dt,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    sku_id,
    sku_name,
    cart_num,
    rk
from
(
    select
        sku_id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        cart_num,
        rank() over (partition by category1_id,category2_id,category3_id order by cart_num desc) rk
    from
    (
        select
            sku_id,
            sum(sku_num) cart_num
        from ${APP}.dwd_trade_cart_full
        where dt='$do_date'
        group by sku_id
    )cart
    left join
    (
        select
            id,
            sku_name,
            category1_id,
            category1_name,
            category2_id,
            category2_name,
            category3_id,
            category3_name
        from ${APP}.dim_sku_full
        where dt='$do_date'
    )sku
    on cart.sku_id=sku.id
)t1
where rk<=3;
"
ads_trade_stats="
insert overwrite table ${APP}.ads_trade_stats
select * from ${APP}.ads_trade_stats
union
select
    '$do_date',
    odr.recent_days,
    order_total_amount,
    order_count,
    order_user_count,
    order_refund_count,
    order_refund_user_count
from
(
    select
        1 recent_days,
        sum(order_total_amount_1d) order_total_amount,
        sum(order_count_1d) order_count,
        count(*) order_user_count
    from ${APP}.dws_trade_user_order_1d
    where dt='$do_date'
    union all
    select
        recent_days,
        sum(order_total_amount),
        sum(order_count),
        sum(if(order_count>0,1,0))
    from
    (
        select
            recent_days,
            case recent_days
                when 7 then order_total_amount_7d
                when 30 then order_total_amount_30d
            end order_total_amount,
            case recent_days
                when 7 then order_count_7d
                when 30 then order_count_30d
            end order_count
        from ${APP}.dws_trade_user_order_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days
)odr
join
(
    select
        1 recent_days,
        sum(order_refund_count_1d) order_refund_count,
        count(*) order_refund_user_count
    from ${APP}.dws_trade_user_order_refund_1d
    where dt='$do_date'
    union all
    select
        recent_days,
        sum(order_refund_count),
        sum(if(order_refund_count>0,1,0))
    from
    (
        select
            recent_days,
            case recent_days
                when 7 then order_refund_count_7d
                when 30 then order_refund_count_30d
            end order_refund_count
        from ${APP}.dws_trade_user_order_refund_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days
)refund
on odr.recent_days=refund.recent_days;
"
ads_trade_stats_by_cate="
insert overwrite table ${APP}.ads_trade_stats_by_cate
select * from ${APP}.ads_trade_stats_by_cate
union
select
    '$do_date' dt,
    nvl(odr.recent_days,refund.recent_days),
    nvl(odr.category1_id,refund.category1_id),
    nvl(odr.category1_name,refund.category1_name),
    nvl(odr.category2_id,refund.category2_id),
    nvl(odr.category2_name,refund.category2_name),
    nvl(odr.category3_id,refund.category3_id),
    nvl(odr.category3_name,refund.category3_name),
    nvl(order_count,0),
    nvl(order_user_count,0),
    nvl(order_refund_count,0),
    nvl(order_refund_user_count,0)
from
(
    select
        1 recent_days,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        sum(order_count_1d) order_count,
        count(distinct(user_id)) order_user_count
    from ${APP}.dws_trade_user_sku_order_1d
    where dt='$do_date'
    group by category1_id,category1_name,category2_id,category2_name,category3_id,category3_name
    union all
    select
        recent_days,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        sum(order_count),
        count(distinct(if(order_count>0,user_id,null)))
    from
    (
        select
            recent_days,
            user_id,
            category1_id,
            category1_name,
            category2_id,
            category2_name,
            category3_id,
            category3_name,
            case recent_days
                when 7 then order_count_7d
                when 30 then order_count_30d
            end order_count
        from ${APP}.dws_trade_user_sku_order_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name
)odr
full outer join
(
    select
        1 recent_days,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        sum(order_refund_count_1d) order_refund_count,
        count(distinct(user_id)) order_refund_user_count
    from ${APP}.dws_trade_user_sku_order_refund_1d
    where dt='$do_date'
    group by category1_id,category1_name,category2_id,category2_name,category3_id,category3_name
    union all
    select
        recent_days,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        sum(order_refund_count),
        count(distinct(if(order_refund_count>0,user_id,null)))
    from
    (
        select
            recent_days,
            user_id,
            category1_id,
            category1_name,
            category2_id,
            category2_name,
            category3_id,
            category3_name,
            case recent_days
                when 7 then order_refund_count_7d
                when 30 then order_refund_count_30d
            end order_refund_count
        from ${APP}.dws_trade_user_sku_order_refund_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name
)refund
on odr.recent_days=refund.recent_days
and odr.category1_id=refund.category1_id
and odr.category1_name=refund.category1_name
and odr.category2_id=refund.category2_id
and odr.category2_name=refund.category2_name
and odr.category3_id=refund.category3_id
and odr.category3_name=refund.category3_name;
"
ads_trade_stats_by_tm="
insert overwrite table ${APP}.ads_trade_stats_by_tm
select * from ${APP}.ads_trade_stats_by_tm
union
select
    '$do_date' dt,
    nvl(odr.recent_days,refund.recent_days),
    nvl(odr.tm_id,refund.tm_id),
    nvl(odr.tm_name,refund.tm_name),
    nvl(order_count,0),
    nvl(order_user_count,0),
    nvl(order_refund_count,0),
    nvl(order_refund_user_count,0)
from
(
    select
        1 recent_days,
        tm_id,
        tm_name,
        sum(order_count_1d) order_count,
        count(distinct(user_id)) order_user_count
    from ${APP}.dws_trade_user_sku_order_1d
    where dt='$do_date'
    group by tm_id,tm_name
    union all
    select
        recent_days,
        tm_id,
        tm_name,
        sum(order_count),
        count(distinct(if(order_count>0,user_id,null)))
    from
    (
        select
            recent_days,
            user_id,
            tm_id,
            tm_name,
            case recent_days
                when 7 then order_count_7d
                when 30 then order_count_30d
            end order_count
        from ${APP}.dws_trade_user_sku_order_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days,tm_id,tm_name
)odr
full outer join
(
    select
        1 recent_days,
        tm_id,
        tm_name,
        sum(order_refund_count_1d) order_refund_count,
        count(distinct(user_id)) order_refund_user_count
    from ${APP}.dws_trade_user_sku_order_refund_1d
    where dt='$do_date'
    group by tm_id,tm_name
    union all
    select
        recent_days,
        tm_id,
        tm_name,
        sum(order_refund_count),
        count(if(order_refund_count>0,user_id,null))
    from
    (
        select
            recent_days,
            user_id,
            tm_id,
            tm_name,
            case recent_days
                when 7 then order_refund_count_7d
                when 30 then order_refund_count_30d
            end order_refund_count
        from ${APP}.dws_trade_user_sku_order_refund_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days,tm_id,tm_name
)refund
on odr.recent_days=refund.recent_days
and odr.tm_id=refund.tm_id
and odr.tm_name=refund.tm_name;
"
ads_traffic_stats_by_channel="
insert overwrite table ${APP}.ads_traffic_stats_by_channel
select * from ${APP}.ads_traffic_stats_by_channel
union
select
    '$do_date' dt,
    recent_days,
    channel,
    cast(count(distinct(mid_id)) as bigint) uv_count,
    cast(avg(during_time_1d)/1000 as bigint) avg_duration_sec,
    cast(avg(page_count_1d) as bigint) avg_page_count,
    cast(count(*) as bigint) sv_count,
    cast(sum(if(page_count_1d=1,1,0))/count(*) as decimal(16,2)) bounce_rate
from ${APP}.dws_traffic_session_page_view_1d lateral view explode(array(1,7,30)) tmp as recent_days
where dt>=date_add('$do_date',-recent_days+1)
group by recent_days,channel;
"
ads_user_action="
insert overwrite table ${APP}.ads_user_action
select * from ${APP}.ads_user_action
union
select
    '$do_date' dt,
    page.recent_days,
    home_count,
    good_detail_count,
    cart_count,
    order_count,
    payment_count
from
(
    select
        1 recent_days,
        sum(if(page_id='home',1,0)) home_count,
        sum(if(page_id='good_detail',1,0)) good_detail_count
    from ${APP}.dws_traffic_page_visitor_page_view_1d
    where dt='$do_date'
    and page_id in ('home','good_detail')
    union all
    select
        recent_days,
        sum(if(page_id='home' and view_count>0,1,0)),
        sum(if(page_id='good_detail' and view_count>0,1,0))
    from
    (
        select
            recent_days,
            page_id,
            case recent_days
                when 7 then view_count_7d
                when 30 then view_count_30d
            end view_count
        from ${APP}.dws_traffic_page_visitor_page_view_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
        and page_id in ('home','good_detail')
    )t1
    group by recent_days
)page
join
(
    select
        1 recent_days,
        count(*) cart_count
    from ${APP}.dws_trade_user_cart_add_1d
    where dt='$do_date'
    union all
    select
        recent_days,
        sum(if(cart_count>0,1,0))
    from
    (
        select
            recent_days,
            case recent_days
                when 7 then cart_add_count_7d
                when 30 then cart_add_count_30d
            end cart_count
        from ${APP}.dws_trade_user_cart_add_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days
)cart
on page.recent_days=cart.recent_days
join
(
    select
        1 recent_days,
        count(*) order_count
    from ${APP}.dws_trade_user_order_1d
    where dt='$do_date'
    union all
    select
        recent_days,
        sum(if(order_count>0,1,0))
    from
    (
        select
            recent_days,
            case recent_days
                when 7 then order_count_7d
                when 30 then order_count_30d
            end order_count
        from ${APP}.dws_trade_user_order_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days
)ord
on page.recent_days=ord.recent_days
join
(
    select
        1 recent_days,
        count(*) payment_count
    from ${APP}.dws_trade_user_payment_1d
    where dt='$do_date'
    union all
    select
        recent_days,
        sum(if(order_count>0,1,0))
    from
    (
        select
            recent_days,
            case recent_days
                when 7 then payment_count_7d
                when 30 then payment_count_30d
            end order_count
        from ${APP}.dws_trade_user_payment_nd lateral view explode(array(7,30)) tmp as recent_days
        where dt='$do_date'
    )t1
    group by recent_days
)pay
on page.recent_days=pay.recent_days;
"
ads_user_change="
insert overwrite table ${APP}.ads_user_change
select * from ${APP}.ads_user_change
union
select
    churn.dt,
    user_churn_count,
    user_back_count
from
(
    select
        '$do_date' dt,
        count(*) user_churn_count
    from ${APP}.dws_user_user_login_td
    where dt='$do_date'
    and login_date_last=date_add('$do_date',-7)
)churn
join
(
    select
        '$do_date' dt,
        count(*) user_back_count
    from
    (
        select
            user_id,
            login_date_last
        from ${APP}.dws_user_user_login_td
        where dt='$do_date'
    )t1
    join
    (
        select
            user_id,
            login_date_last login_date_previous
        from ${APP}.dws_user_user_login_td
        where dt=date_add('$do_date',-1)
    )t2
    on t1.user_id=t2.user_id
    where datediff(login_date_last,login_date_previous)>=8
)back
on churn.dt=back.dt;
"
ads_user_retention="
insert overwrite table ${APP}.ads_user_retention
select * from ${APP}.ads_user_retention
union
select
    '$do_date' dt,
    login_date_first create_date,
    datediff('$do_date',login_date_first) retention_day,
    sum(if(login_date_last='$do_date',1,0)) retention_count,
    count(*) new_user_count,
    cast(sum(if(login_date_last='$do_date',1,0))/count(*)*100 as decimal(16,2)) retention_rate
from
(
    select
        user_id,
        date_id login_date_first
    from ${APP}.dwd_user_register_inc
    where dt>=date_add('$do_date',-7)
    and dt<'$do_date'
)t1
join
(
    select
        user_id,
        login_date_last
    from ${APP}.dws_user_user_login_td
    where dt='$do_date'
)t2
on t1.user_id=t2.user_id
group by login_date_first;
"
ads_user_stats="
insert overwrite table ${APP}.ads_user_stats
select * from ${APP}.ads_user_stats
union
select
    '$do_date' dt,
    t1.recent_days,
    new_user_count,
    active_user_count
from
(
    select
        recent_days,
        sum(if(login_date_last>=date_add('$do_date',-recent_days+1),1,0)) new_user_count
    from ${APP}.dws_user_user_login_td lateral view explode(array(1,7,30)) tmp as recent_days
    where dt='$do_date'
    group by recent_days
)t1
join
(
    select
        recent_days,
        sum(if(date_id>=date_add('$do_date',-recent_days+1),1,0)) active_user_count
    from ${APP}.dwd_user_register_inc lateral view explode(array(1,7,30)) tmp as recent_days
    group by recent_days
)t2
on t1.recent_days=t2.recent_days;
"

case $1 in
    "ads_activity_stats" )
        hive -e "$ads_activity_stats"
    ;;
    "ads_coupon_stats" )
        hive -e "$ads_coupon_stats"
    ;;
    "ads_new_buyer_stats" )
        hive -e "$ads_new_buyer_stats"
    ;;
    "ads_order_by_province" )
        hive -e "$ads_order_by_province"
    ;;
    "ads_page_path" )
        hive -e "$ads_page_path"
    ;;
    "ads_repeat_purchase_by_tm" )
        hive -e "$ads_repeat_purchase_by_tm"
    ;;
    "ads_sku_cart_num_top3_by_cate" )
        hive -e "$ads_sku_cart_num_top3_by_cate"
    ;;
    "ads_trade_stats" )
        hive -e "$ads_trade_stats"
    ;;
    "ads_trade_stats_by_cate" )
        hive -e "$ads_trade_stats_by_cate"
    ;;
    "ads_trade_stats_by_tm" )
        hive -e "$ads_trade_stats_by_tm"
    ;;
    "ads_traffic_stats_by_channel" )
        hive -e "$ads_traffic_stats_by_channel"
    ;;
    "ads_user_action" )
        hive -e "$ads_user_action"
    ;;
    "ads_user_change" )
        hive -e "$ads_user_change"
    ;;
    "ads_user_retention" )
        hive -e "$ads_user_retention"
    ;;
    "ads_user_stats" )
        hive -e "$ads_user_stats"
    ;;
    "all" )
        hive -e "$ads_activity_stats$ads_coupon_stats$ads_new_buyer_stats$ads_order_by_province$ads_page_path$ads_repeat_purchase_by_tm$ads_sku_cart_num_top3_by_cate$ads_trade_stats$ads_trade_stats_by_cate$ads_trade_stats_by_tm$ads_traffic_stats_by_channel$ads_user_action$ads_user_change$ads_user_retention$ads_user_stats"
    ;;
esac

增加脚本执行权限

chmod 777 dws_to_ads.sh

脚本用法

dws_to_ads.sh all 2020-06-14
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论
01_数仓项目介绍.avi4 b4 Q* Q8 Z0 Y) C6 O! w 02_数仓采集_用户行为采集课程介绍.avi8 \7 f3 O. c- {: v# W& V$ Y& b 03_数仓采集_数仓的概念.avi8 Z# X* q/ c; }3 A* [ T 04_数仓采集_项目需求.avi6 B8 n s0 h! M4 X# j! |0 ` 05_数仓采集_项目技术选型.avi8 [% N% W, U# y5 s 06_数仓采集_系统数据流程设计.avi8 N: L Y6 D6 y 07_数仓采集_框架版本选型.avi, k8 c& `! j& B 08_数仓采集_框架版本具体型号.avi1 x& Q/ D. O' l 09_数仓采集_服务器选型.avi3 _: b. H. i! a; O8 V3 A7 [1 s0 t; B 100_业务数仓_DWS之用户行为宽表.avi* o! `2 N, _5 u& a$ W 101_业务数仓_需求九:GMV成交总额.avi; x4 H& X( _' I8 L7 r* n3 I/ y 102_业务数仓_需求十:ADS之新增用户占日活跃用户比率.avi 103_业务数仓_需求十一:ADS之用户行为漏斗分析.avi 104_业务数仓_用户购买商品明细表(宽表).avi 105_业务数仓_需求十二:ADS品牌复购率.avi 106_业务数仓_需求十三:求每个等级的用户对应的复购率前十的商品排行(学生分享).avi6 e) h" C# G2 X+ z6 B 107_业务数仓_数据可视化.avi! @5 r5 g- n0 f, J3 l 108_业务数仓_Azkaban安装.avi( r9 z2 L3 \% G' k9 [: t9 K 109_业务数仓_GMV指标获取的全调度流程.avi& O, S. M2 Q# o 10_数仓采集_集群资源规划设计.avi 110_业务数仓_拉链表理论.avi 111_业务数仓_拉链表制作.avi+ k: N4 e; P4 X; ?( i' O0 {0 u. M9 Y 112_业务数仓_业务数仓项目总结.avi/ {1 S. ^* Y" b# M) | 113_业务数仓_即席数仓课程介绍.avi 114_即席数仓_Presto简介.avi+ r. E# z! Z4 t% o+ r8 }7 Q 115_即席数仓_Presto安装及使用.avi 116_即席数仓_Presto优化.avi% @4 x# m3 } G# h 117_即席数仓_Druid概念、特点、场景.avi 118_即席数仓_Druid对比其他框架.avi7 C4 m1 z" }# n% h( F 119_即席数仓_Druid框架原理.avi 11_数仓采集_测试集群服务器规划.avi* X" H5 S4 M1 C0 j" w 120_即席数仓_Druid数据结构.avi, V& D, ]# l" a0 R1 ?) n; L f 121_即席数仓_Druid安装.avi 122_面试题_总体架构.avi! c' O1 I8 T6 n Q 123_面试题_技术框架.avi 124_面试题_用户行为、业务数据、即席查询.avi4 N2 j# j6 P% O" a 125_面试题_开发经验.avi3 b$ C' k; H" B2 p# c( \ 126_CDH数仓_课程介绍.avi9 _. V/ m% J5 ^* s/ g+ f; g( s 127_CDH数仓_CM简介及架构.avi8 ]' ]* B! X' j. Z9 [ 128_CDH数仓_CM安装环境准备.avi, Q8 k8 x/ j3 v 129_CDH数仓_CM、HadoopZookeeper安装.avi7 z) @! o) G0 @4 s; J 12_数仓采集_埋点数据基本格式.avi 130_CDH数仓_采集Flume的安装.avi# V L4 F& x1 t* }( Z8 F' o9 g' ` 131_CDH数仓_Kafka安装.avi" N8 o- i b/ W) o3 j8 j/ a/ g 132_CDH数仓_测试Flume和Kafka安装.avi 133_CDH数仓_消费Flume配置完成.avi6 ?$ m3 H4 m; C# ^$ j 134_CDH数仓_Hive、Oozie、Hue安装.avi# ]& Y, M2 |) A( o# Y( b& w 135_CDH数仓_用户行为数仓ODS导数据.avi 136_CDH数仓_用户行为数仓完结.avi. F4 z* v& a; q" }% V* \ 137_CDH数仓_业务数据生成.avi7 W7 \$ ~$ n% w2 N, {( A; l! }8 K: S 138_CDH数仓_业务数仓完结.avi! N7 f. d0 U2 N( }' w) P- b" S 139_CDH数仓_Oozie执行前准备.avi 13_数仓采集_事件日志数据(上).avi2 S' ` H& ^& S3 a1 X 140_CDH数仓_Oozie任务编写及运行.avi 141_CDH数仓_即席查询数仓搭建Impala.avi 142_CDH数仓_Spark安装及总结.avi 14_数仓采集_事件日志数据(下).avi 15_数仓采集_日志生成代码编写.avi4 |* G) Z3 J4 ]/ b9 z$ @ 16_数仓采集_Logback日志打印控制.avi 17_数仓采集_服务器准备.avi 18_数仓采集_Hadoop安装.avi 19_数仓采集_项目经验之HDFS多目录配置.avi 20_数仓采集_项目经验之支持LZO压缩配置.avi j3 Q& D8 m* G9 R Q$ G 21_数仓采集_项目经验之基准测试.avi 22_数仓采集_项目经验之HDFS参数调优.avi; F" t) F) H7 W' {& L% n3 H ~7 s 23_数仓采集_Zookeeper安装.avi6 c1 v9 x4 \% K5 D. \0 M 24_数仓采集_项目经验之ZK集群启动停止脚本.avi( i1 P# ^( y1 Q- a 25_数仓采集_生成测试日志.avi 26_数仓采集_集群日志生成启动脚本.avi 27_数仓采集_集群时间同步修改脚本.avi, n2 a/ j1 @) t* d w 28_数仓采集_集群所有进程查看脚本.avi 29_数仓采集_每日回顾.avi; R" Y P2 X, E/ [+ B' j# ~& K. e 30_数仓采集_日志采集Flume安装.avi* V0 |0 U7 o- @* R; w) M 31_数仓采集_Flume组件及配置.avi 32_数仓采集_日志采集Flume配置分析.avi U6 j% Q4 F$ T6 U5 ^ 33_数仓采集_ETL拦截器.avi 34_数仓采集_分类型拦截器.avi! b5 ^. a8 ^; }$ x8 z) l2 U3 }" p 35_数仓采集_日志采集Flume启动停止脚本.avi2 ~/ r- J: h$ U, q/ e# e7 k% M 36_数仓采集_Kafka集群安装.avi3 L6 `7 F& o/ U6 F" U5 U 37_数仓采集_Kafka集群启动停止脚本.avi 38_数仓采集_Kafka Manager安装及脚本.avi& h9 z' v' g0 ^. }0 j 39_数仓采集_项目经验之Kafka压力测试.avi7 ~8 m+ w$ q/ G$ ?- _- K 40_数仓采集_项目经验之Kafka机器数量计算.avi 41_数仓采集_消费Kafka数据Flume.avi 42_数仓采集_项目经验之Flume内存优化.avi; q3 Q6 E! I, d7 n& k# {# B6 K 43_数仓采集_项目经验之Flume组件.avi- S+ J+ s/ {5 S0 d 44_数仓采集_采集通道启动停止脚本.avi! Q; X6 }4 C" g. f 45_数仓采集_调试经验.avi! P; q2 w N1 c i5 Z' c; i" i' O- x 46_数仓采集_面试题(Linux、Shell、Hadoop).avi2 R" A6 R7 D' p9 h( i. \ I" F9 w 47_数仓采集_面试题(Flume、Kafka).avi& A1 w0 W) S1 ~# i& n, } ~6 o( b& o 48_用户行为数仓_每日回顾.avi% U( @. v7 D* C* B W J 49_用户行为数仓_用户行为数仓课程介绍.avi 50_用户行为数仓_为什么要分.avi! J- C* F* K' R* l 51_用户行为数仓_数仓.avi4 W _. ]: j5 U; l$ Q9 l. Q [/ u 52_用户行为数仓_数据集市与数据仓库概念.avi5 U5 c# e( Y8 B% c 53_用户行为数仓_数仓命名规范.avi 54_用户行为数仓_Hive&MySQL;安装.avi 55_用户行为数仓_Hive运行引擎Tez.avi! L# \% m0 s- F; A" q 56_用户行为数仓_项目经验之元数据备份.avi 57_用户行为数仓_ODS启动日志和事件日志表创建.avi 58_用户行为数仓_ODS加载数据脚本.avi' J8 ^- I/ b5 O3 Y) @9 a- h 59_用户行为数仓_DWD启动日志建表及导入数据.avi9 h3 [. T0 F1 ~6 s! i/ J 60_ 用户行为数仓_DWD启动表加载数据脚本.avi$ \1 Z0 Z/ m; d: F+ B5 u$ c 61_用户行为数仓_DWD事件基础明细表创建.avi; Y& i+ U7 S6 P" X) T3 n! V 62_用户行为数仓_自定义UDF函数(解析公共字段).avi7 Q/ i) X8 O6 S0 M( V' m- ]- M 63_用户行为数仓_自定义UDTF函数(解析事件日志基础明细表).avi 64_用户行为数仓_DWD数据解析脚本.avi 65_用户行为数仓_DWD事件表加载数据脚本.avi 66_用户行为数仓_今日回顾.avi* e9 W+ P$ {5 ?! x9 [- e5 ]# a 67_用户行为数仓_业务术语.avi 68_用户行为数仓_日期的系统函数.avi 69_用户行为数仓_每日活跃设备明细.avi 70_用户行为数仓_每周活跃设备明细.avi 71_用户行为数仓_每月活跃设备明细.avi 72_用户行为数仓_DWS加载数据脚本.avi- i* h$ d' Q7 M1 G0 ?% f 73_用户行为数仓_需求一:ADS日活、周活、月活用户数.avi- I- Q* u3 n; v. n, T 74_用户行为数仓_每日新增设备明细表.avi/ B# |; {' c4 y6 y9 \2 r( i 75_用户行为数仓_需求二:ADS每日新增设备表.avi 76_用户行为数仓_用户留存分析.avi 77_用户行为数仓_1、2、3、n日留存用户明细.avi v. ^5 Q1 \ `9 V4 Q 78_用户行为数仓_需求三:ADS留存用户和留存比率.avi 79_用户行为数仓_新数据准备.avi 80_用户行为数仓_需求四:沉默用户.avi 81_用户行为数仓_需求五:本周回流用户数.avi 82_用户行为数仓_需求六:流失用户.avi2 x0 _( B( `, z4 j$ |5 S2 Z4 T- e% R) ] 83_用户行为数仓_需求七:最近连续3周活跃用户数.avi 84_用户行为数仓_需求八:最近七天内连续三天活跃用户数.avi- C- l" J O8 v3 x- J$ r 85_用户行为数仓_用户行为数仓业务总结.avi- V4 n, x9 B* A( P6 n/ e! E! U 86_用户行为数仓_Hive企业面试题总结.avi3 l9 J8 F2 t0 p& S! O! ^ 87_业务数仓_业务数仓课程介绍.avi 88_业务数仓_电商业务与数据结构简介.avi 89_业务数仓_表的分类.avi# X. Q* ~# f7 F P' @; i+ z 90_业务数仓_同步策略.avi; k0 r$ A: b9 E) @1 W 91_业务数仓_范式理论.avi5 ~2 z+ A' F+ N- J" S% r 92_业务数仓_雪花模型、星型模型和星座模型.avi 93_业务数仓_配置Hadoop支持Snappy压缩.avi 94_业务数仓_业务数据生成.avi 95_业务数仓_Sqoop安装及参数.avi% s/ l0 E. R( Y9 s, h3 k 96_业务数仓_Sqoop导入数据.avi4 {8 ~! a8 o4 `" y: p5 {1 ^ 97_业务数仓_ODS建表及数据导入.avi 98_业务数仓_DWD建表及导入数据.avi 99_业务数仓_需求讲解.avi7 X6 q, I3 Y+ F: N8 h 源码笔记资料.rar0 W
一、课程简介<br /> <br /> 随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。<br /> <br /> 二、课程内容<br /> <br /> 本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、HadoopZookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。<br /> <br /> <br /> 三、课程目标<br /> <br /> 本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。<br /> <br /> 四、课程亮点<br /> 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。<br /> <br /> <br /> <div> <br /> </div>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cpuCode

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值