排序算法的比较
1、稳定性
归并排序、冒泡排序、插入排序。基数排序是稳定的
选择排序、快速排序、希尔排序、堆排序是不稳定的
2、时间复杂度
最基础的四个算法:冒泡、选择、插入、快排中,快排的时间复杂度最小O(n*log2n),其他都是O(n2)
排序法 | 平均时间 | 最差情形 | 稳定度 | 额外空间 | 备注 |
冒泡 | O(n2) | O(n2) | 稳定 | O(1) | n小时较好 |
选择 | O(n2) | O(n2) | 不稳定 | O(1) | n小时较好 |
插入 | O(n2) | O(n2) | 稳定 | O(1) | 大部分已排序时较好 |
基数 | O(logRB) | O(logRB) | 稳定 | O(n) | B是真数(0-9), R是基数(个十百) |
Shell | O(nlogn) | O(ns) 1<s<2 | 不稳定 | O(1) | s是所选分组 |
快速 | O(nlogn) | O(n2) | 不稳定 | O(nlogn) | n大时较好 |
归并 | O(nlogn) | O(nlogn) | 稳定 | O(1) | n大时较好 |
堆 | O(nlogn) | O(nlogn) | 不稳定 | O(1) | n大时较好 |
注:
1 归并排序可以通过手摇算法将空间复杂度降到O(1),但是时间复杂度会提高。
2 基数排序时间复杂度为O(N*M),其中N为数据个数,M为数据位数。
辅助记忆
- 时间复杂度记忆-
- 冒泡、选择、直接 排序需要两个for循环,每次只关注一个元素,平均时间复杂度为O(n2)O(n2)(一遍找元素O(n)O(n),一遍找位置O(n)O(n))
- 快速、归并、希尔、堆基于二分思想,log以2为底,平均时间复杂度为O(nlogn)O(nlogn)(一遍找元素O(n)O(n),一遍找位置O(logn)O(logn))
- 稳定性记忆-“快希选堆”(快牺牲稳定性)
- 排序算法的稳定性:排序前后相同元素的相对位置不变,则称排序算法是稳定的;否则排序算法是不稳定的。
原理理解
1 冒泡排序
1.1 过程
冒泡排序从小到大排序:一开始交换的区间为0~N-1,将第1个数和第2个数进行比较,前面大于后面,交换两个数,否则不交换。再比较第2个数和第三个数,前面大于后面,交换两个数否则不交换。依次进行,最大的数会放在数组最后的位置。然后将范围变为0~N-2,数组第二大的数会放在数组倒数第二的位置。依次进行整个交换过程,最后范围只剩一个数时数组即为有序。
2.2 动图理解
2 选择排序
2.1 过程
选择排序从小到大排序:一开始从0~n-1区间上选择一个最小值,将其放在位置0上,然后在1~n-1范围上选取最小值放在位置1上。重复过程直到剩下最后一个元素,数组即为有序。
2.2 动图
3 插入排序
3.1 过程
插入排序从小到大排序:首先位置1上的数和位置0上的数进行比较,如果位置1上的数大于位置0上的数,将位置0上的数向后移一位,将1插入到0位置,否则不处理。位置k上的数和之前的数依次进行比较,如果位置K上的数更大,将之前的数向后移位,最后将位置k上的数插入不满足条件点,反之不处理。
3.2 动图
4 归并排序
4.1 过程
归并排序从小到大排序:首先让数组中的每一个数单独成为长度为1的区间,然后两两一组有序合并,得到长度为2的有序区间,依次进行,直到合成整个区间。
4.2 动图
5 快速排序
5.1 过程
快速排序从小到大排序:在数组中随机选一个数(默认数组首个元素),数组中小于等于此数的放在左边,大于此数的放在右边,再对数组两边递归调用快速排序,重复这个过程。
5.2 动图
6 堆排序
6.1 过程
堆排序从小到大排序:首先将数组元素建成大小为n的大顶堆,堆顶(数组第一个元素)是所有元素中的最大值,将堆顶元素和数组最后一个元素进行交换,再将除了最后一个数的n-1个元素建立成大顶堆,再将最大元素和数组倒数第二个元素进行交换,重复直至堆大小减为1。
-
注:完全二叉树
假设二叉树深度为n,除了第n层外,n-1层节点都有两个孩子,第n层节点连续从左到右。如下图 -
注:大顶堆
大顶堆是具有以下性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值。
即,根节点是堆中最大的值,按照层序遍历给节点从1开始编号,则节点之间满足如下关系:
6.2 动图
6.3 核心代码(函数)
注意!!!数组从1开始,1~n
7 希尔排序
7.1 过程
希尔排序是插入排序改良的算法,希尔排序步长从大到小调整,第一次循环后面元素逐个和前面元素按间隔步长进行比较并交换,直至步长为1,步长选择是关键。
7.2 动图
7.3 核心程序(函数)
8 桶排序(基数排序和基数排序的思想)
8.1 过程
桶排序是计数排序的变种,把计数排序中相邻的m个”小桶”放到一个”大桶”中,在分完桶后,对每个桶进行排序(一般用快排),然后合并成最后的结果。
8.2 图解
8.3 核心程序
9 计数排序
9.1 过程
算法的步骤如下:
- 找出待排序的数组中最大和最小的元素
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
9.2 图解
10 基数排序
10.1 过程
基数排序是基于数据位数的一种排序算法。
它有两种算法
①LSD–Least Significant Digit first 从低位(个位)向高位排。
②MSD– Most Significant Digit first 从高位向低位(个位)排。
时间复杂度O(N*最大位数)。
空间复杂度O(N)。
10.2 图解
对a[n]按照个位0~9进行桶排序:
对b[n]进行累加得到c[n],用于b[n]中重复元素计数
!!!b[n]中的元素为temp中的位置!!!跳跃的用++补上:
temp数组为排序后的数组,写回a[n]。temp为按顺序倒出桶中的数据(联合b[n],c[n],a[n]得到),重复元素按顺序输出: