
课程向
系列学习课程笔记
挚爱FXJ
这个作者很懒,什么都没留下…
展开
-
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P32)
我们将学习来自“暗黑大陆的模型”——GPT-3,将学习到GPT-3的目标、实验结果、瑕疵和有趣的BUG原创 2020-09-16 10:28:05 · 666 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P31)
P30中介绍QA中Question 答案和 Source 来源的种种。而在本篇P31中将学习Question问题的部分,将会从三大经典问题讲起,以及它们可能的解法。原创 2020-09-15 09:15:57 · 673 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P30)
Question Answering QA问题的学习,本篇将介绍QA中Question 答案和 Source 来源的种种,下一篇将是有关问题的部分。原创 2020-09-14 14:30:47 · 1187 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P29)
语音方面前沿的AALBERT的有关内容原创 2020-09-13 14:23:32 · 7560 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P28-2)
BERT在语音上的应用,主要有三大类:wav2vec、SLU BERT、Mockingjay,以及语音BERT的前沿研究热点。原创 2020-09-12 13:49:18 · 7768 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P28-1)
过去自监督学习在语音中的应用,主要分为两大类:CPC和APC,两类是根据不同的损失函数划分的原创 2020-09-11 15:09:47 · 867 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P27)
本篇,依存句法分析:找出句子中词的依赖关系。我们将学到依存句法分析的基本概念:关系、依存句法树和抽象化的训练任务,以及与成分句法分析类似的方法等。原创 2020-09-10 19:58:34 · 705 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P26)
本篇 Constituency Parsing 成分句法分析将讲解任务的基本概念、训练目标以及常用的两种解法,和深度学习在这些解法中的使用。原创 2020-09-09 08:00:28 · 7687 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P25)
多语种BERT的神奇之处,零样本学习的跨语言学习能力以及有关猜想和实验。原创 2020-09-08 08:04:46 · 3110 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P24-2)
无监督的 Summarization 摘要 、Translation 翻译 和 ASR 语音辨识 的实现与方法原创 2020-09-07 07:58:34 · 6857 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P24-1)
Text Style Transfer 文字风格转换的实现与模型架构,以及在使用无监督学习方法做文字风格转换时会遇到的问题,解决方法等。原创 2020-09-05 09:09:38 · 2964 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P23)
非自回归模型 的序列生成,将讲述有关问题、实现方法、和模型结构原创 2020-09-04 08:52:52 · 791 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P22)
条件生成领域,将从三个方面进行讲解 :Generation 怎么产生一个有结构的东西,Attention 产生结构的辅助,Tips for Generation 一些生成任务的技巧原创 2020-09-03 00:14:55 · 1881 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P21)
指代消解问题的定义、端到端训练的模块和简化运算以及前沿研究等原创 2020-09-02 11:29:18 · 928 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P20)
预训练模型有关概念与技术:BERT、XLNet、MASS/BART、UniLM、 ELECTRA原创 2020-09-01 18:50:23 · 2022 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P19)
预训练模型的定义、发展到微调原创 2020-08-31 22:17:14 · 814 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P18)
经典伟大的语言模型,从传统的语言模型 到 ELMO、BERT、GPT原创 2020-08-30 22:48:52 · 4696 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P17) 任务精简
NLP任务概述原创 2020-08-29 01:20:27 · 709 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P17) -2
从本篇其将进入与文字有关的任务,也就是大家所熟知的NLP任务,请注意本篇类似科普类,不涉及任何技术模型等,可以用来归纳总结,而且李宏毅老师的分类清晰有序,还是很值得参考的。在本篇中,我们将讲述**NLP任务概述**,虽然NLP应用非常广泛、模型变化多端,但是总归起来来说,不脱以下几个变化:文字->类别、文字->文字原创 2020-09-11 19:12:18 · 743 阅读 · 2 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P17) -1
从本篇其将进入与文字有关的任务,也就是大家所熟知的NLP任务,请注意本篇类似科普类,不涉及任何技术模型等,可以用来归纳总结,而且李宏毅老师的分类清晰有序,还是很值得参考的。在本篇中,我们将讲述**NLP任务概述**,虽然NLP应用非常广泛、模型变化多端,但是总归起来来说,不脱以下几个变化:文字->类别、文字->文字原创 2020-08-27 23:34:50 · 713 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P16)
在本篇中,我们将开始讲解 Speaker Verification 语者验证有关技术,输入语音,输出类别的模型。类似地,这样的模型可以用在很多不同的领域,如语音情绪判断、语音安全判断、语音关键词是否存在等等,而今天我们只关注 语者验证,其他的应用大同小异,模型一样,都是语音分类问题。 .Speaker Verification 语者验证我们将会从3个方面讲解:1 Task Introduction2 Speaker Embedding3 End-to-end原创 2020-08-26 22:17:37 · 5406 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P15)
在本篇开始我们继续讲解 Text-to-Speech (TTS) Synthesis* 语音合成,输入文字产生声音,我们会从四个方面来讲:P14讲解1 和 2,而本篇P15将讲解 3 和 4 1 TTS before End-to-End :在端到端技术之前TTS是怎么做的2 Tacotron: End-to-end TTS :硬train一发的时代3 Beyond Tacotron :硬train一发的后时代4 Controllable TTS原创 2020-08-25 21:25:54 · 1049 阅读 · 0 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P14)
在本篇开始我们继续讲解 Text-to-Speech (TTS) Synthesis 语音合成,输入文字产生声音,我们会从四个方面来讲:本篇将讲解1和21 TTS before End-to-End :在端到端技术之前TTS是怎么做的2 Tacotron: End-to-end TTS :硬train一发的时代3 Beyond Tacotron :硬train一发的后时代4 Controllable TTS :怎么控制TTS合出我们要的声音原创 2020-08-24 22:14:12 · 795 阅读 · 2 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P13)
端到端的 TasNet 的模型结构,以及Speech Sparation 语音分离领域的前沿研究领域及其扩展等。原创 2020-08-24 10:24:07 · 583 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P12)
在本篇开始我们将讲解 Speech Separation 语音分离技术,从定义、分类再到其中一种 Speaker Separation的评估和排列问题与最新的解决方法。原创 2020-08-23 21:03:32 · 1777 阅读 · 3 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P11)
本篇中,我们继续将讲解 语音转换 中的Feature Disentangle 中的问题和解决方法,以及对Unparallel Data的另外一种方法 Direct Transformation直接转换技术原创 2020-08-22 16:02:45 · 3233 阅读 · 1 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P10)
>在前几篇中讲解了语音辨识 Speech Recognition 的前世今生,而从本篇起将进入 Voice Conversion 语音转换的篇章。本篇将讲解 语音转换 的定义、应用 以及在实现技术中重要的Encoder和Decoder部分原创 2020-08-21 23:10:03 · 5915 阅读 · 3 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P9)
在语音辨识中使用Language Model的原因和方法,以及传统的N-gram和如今的NN-based LM等原创 2020-08-20 10:51:27 · 840 阅读 · 2 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P8)
对于语音辨识系统的三个模型HMM 、CTC、RNN-T,我们将解决四个问题,并做三个模型的总结比较。原创 2020-08-19 22:52:55 · 1309 阅读 · 4 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P7)
Alignment in HMM,CTC,RNN-T 1. **问题1**:怎么穷举所有可能的alignments? 2. **问题2**:怎么把所有的alignments加起来? 3. **问题3**:怎么做训练?HMM用的是GMM我们不管它。而CTC,RNN-T用的是**gradient descent**,我们该怎么计算将这些alignment加起来的偏微分? 4. **问题4**:怎么做Decoding呢?怎么最优化这个P(Y|X)呢?原创 2020-08-18 23:51:03 · 5446 阅读 · 3 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P6)
传统的语音辨识系统: Hidden Markov Model (HMM) 隐马尔科夫模型上两篇我们讲的都是神经网络在语音辨识中的使用(LAS、CTC、RNA、RNN-T、Neural Transducer、MoCha),而即使是如今大多数的语音辨识系统还是使用传统的 Hidden Markov Model 隐马尔科夫模型。让我们看看至少10年前还没有deep learning的时候,人们是怎样解决语音辨识的。原创 2020-08-18 14:32:07 · 857 阅读 · 3 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P5)
语音辨识模型:CTC 、RNN-T(&RNA)、Neural Transducer、MoChA原创 2020-08-17 23:01:59 · 1751 阅读 · 2 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P4)
语音辨识模型1:LAS (Listen, Attend, and Spell)原创 2020-08-17 13:40:08 · 1252 阅读 · 3 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P2&3)
语音辨识系统中的输入和输出输入:语音,形式化表示为 长度为T,维度为d 的向量输出:文字,形式化表示为 各种 token原创 2020-08-16 23:58:33 · 2023 阅读 · 6 评论 -
课程向:深度学习与人类语言处理 ——李宏毅,2020 (P1)
人类语言处理任务总结与研究方向原创 2020-08-16 20:29:02 · 3235 阅读 · 7 评论