小sun的假期

本文介绍了一种算法,用于处理多个区间并找出它们合并后的最大空闲区间。通过输入区间的数量和具体区间,算法首先对区间进行排序,然后合并重叠的区间,最后找出最长的未被区间覆盖的空闲区间长度。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int N = 100003;
typedef pair<int, int> PIR;


vector<PIR> sec;
PIR s[N];
int main()
{
	int n, m;
	cin >> n >> m;
	
	for (int i = 0; i < m; i++)
	{
		int a, b;
		cin >> a >> b;
		s[i] = { a,b };
	}
	sort(s, s + m);

	//合并区间
	int l = s[0].first, r = s[0].second;
	if (m == 1)
		sec.push_back({ l,r });
	for (int i = 1; i < m; i++)
	{
		if (s[i].second <= r)
			continue;
		if (s[i].second > r && s[i].first <= r)
			r = s[i].second;
		else
		{
			sec.push_back({ l,r });
			l = s[i].first, r = s[i].second;
		}
	}
	sec.push_back({ l,r });

	//求最大连续无安排区间
	int end = 1, res = 0;
	for (int i = 0; i < sec.size(); i++)
	{
		res = max(res, sec[i].first - end);
		end = sec[i].second;
	}
	res = max(res, n - end);

	cout << res;

	return 0;
}

 

内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,结合Matlab代码实现。该模型充分考虑光伏发电的不确定性与时空相关性,利用MBLS提升预测精度与学习效率,并通过Copula函数刻画多个光伏站点间预测误差的非线性相关结构,实现高精度的概率区间预测。文档还列举了大量相关的科研方向与Matlab仿真应用案例,涵盖风电预测、负荷预测、综合能源系统优化、路径规划、电力系统分析等多个领域,展示了其在可再生能源预测与智能系统优化中的广泛应用前景。; 适合人群:具备一定Matlab编程基础,从事可再生能源预测、电力系统优【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)化、智能算法应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:① 提升光伏功率预测的准确性与可靠性,尤其适用于多站点协同预测场景;② 掌握MBLS与Copula理论在时空相关性建模中的融合方法,构建概率预测框架;③ 借助Matlab代码实现,开展学术复现、科研创新或实际工程项目开发。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点理解MBLS的建模流程与Copula函数在相关性分析中的具体应用,同时可参考文档列出的相关研究方向拓展应用场景。
内容概要:本文围绕“并_离网风光互补制氢合成氨系统”的容量规划与调度优化问题展开,重点采用Cplex求解器结合Matlab代码实现对系统进行建模与优化分析。文章复现了相关科研论文中的方法,构建了综合考虑风能、光伏、电解水制氢及合成氨生产的多能源耦合系统模型,旨在优化系统容量配置与运行调度,提升可再生能源利用率与系统经济性。文中详细展示了数学建模过程、约束条件设定、目标函数设计以及Cpl【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析【Cplex求解】(Matlab代码实现)ex在Matlab环境下的调用实现方式,涵盖了从数据输入到结果输出的完整流程,并提供了可供学习和二次开发的代码资源。; 适合人群:具备一定电力系统、能源系统或运筹优化背景,熟悉Matlab编程,有一定数学建模基础的研究生、科研人员或工程技术人员,尤其适合从事新能源系统规划与优化方向的研究者; 使用场景及目标:① 学习并掌握风光互补制氢合成氨系统的集成建模方法;② 理解并应用Cplex求解器解决能源系统优化问题;③ 复现高水平论文中的优化模型,用于科研验证或项目开发;④ 开展离网/并网能源系统容量配置与调度策略研究; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注目标函数与约束条件的数学表达与程序实现对应关系,同时利用所提供的网盘资源获取完整代码与测试数据,动手调试与修改参数以加深理解,推荐配合YALMIP工具箱使用以提升建模效率。
内容概要:本文围绕“考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化”展开研究,通过构建优化模型,将阶梯式碳交易机制引入综合能源系统,结合电解水制氢技术,实现对系统热、电能量的协同调度与优化。利用Matlab编程实现模型求解,旨在降低系统运行成本、减少碳排放,并提高可再生能源消纳能力。文中详细阐述了系统架构、数学模型、约束条件及目标函数的设计,体现了碳价激励机制对能源调度决策的影响,同时展示了电制氢在能量转换与存储中的调节作用。; 适合人群:具备一定电力系统、能源系统优化背景,熟悉Matlab建模与优考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化(Matlab代码实现)化算法(如YALMIP、CPLEX)的应用,从事新能源、低碳技术、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易政策下综合能源系统的低碳经济运行策略;②探索电制氢技术在能源耦合系统中的调度潜力与价值;③掌握基于Matlab的能源系统优化建模方法,复现高水平期刊(如SCI)研究成果; 阅读建议:建议结合文中提供的Matlab代码资源包,理解模型构建逻辑与求解流程,重点关注目标函数中碳交易成本的分段线性化处理、电制氢设备的动态特性建模以及多能流耦合约束的实现方式,建议配合YALMIP工具包进行调试与扩展实验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值