最短路上的统计——Floyd

题目:

描述
一个无向图上,没有自环,所有边的权值均为1,对于一个点对(a,b)
我们要把所有a与b之间所有最短路上的点的总个数输出。

输入
第一行n,m,表示n个点,m条边
接下来m行,每行两个数a,b,表示a,b之间有条边
在下来一个数p,表示问题的个数
接下来p行,每行两个数a,b,表示询问a,b
n<=100,p<=5000

输出
对于每个询问,输出一个数c,表示a,b之间最短路上点的总个数

样例
输入
5 6
1 2
1 3
2 3
2 4
3 5
4 5
3
2 5
5 1
2 4
输出
4
3
2

提示
//对于第一个询问有2,3,4,5这四个点

这道题要求最短路上所有点的总个数,也就相当于要访问这条最短路上所有的点来统计个数,那我们掏出 暴力 Floyd, O n 3 On^3 On3算过后,给出你两个点,那就枚举所有点,当做媒介也就是中间点来计算,判断是否和最短路的长度一样,如过一样,总数+1。

代码如下:

#include <iostream>
using namespace std;
int dp[101][101],n,p,ans,m;
int main() {
	cin>>n>>m;
	for (int i=1; i<=n; i++)
		for (int j=1; j<=n; j++)
			dp[i][j]=100000;
	int x,y;
	for (int i=1; i<=m; i++) {
		cin>>x>>y;
		dp[x][y]=1;
		dp[y][x]=1;
	}//邻接矩阵存储 
	for (int k=1; k<=n; k++)
		for (int i=1; i<=n; i++)
			for (int j=1; j<=n; j++)
				if (dp[i][k]+dp[k][j]<dp[i][j])
					dp[i][j]=dp[i][k]+dp[k][j];//枚举中间点,DP思想 
	cin>>p;
	for (int i=1; i<=p; i++) {
		ans=2;//肯定有起点和终点 
		cin>>x>>y;
		for (int k=1; k<=n; k++)
			if (dp[x][k]+dp[k][y]==dp[x][y]&&x!=k&&k!=y) ans++;//枚举中间点,不能为起点和终点 
		cout<<ans<<endl;
	}
	return 0;
}
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页