I Older Brother

本文探讨了如何判断一个数是否为素数的幂,并解释了其与有限域存在的关系。通过质因子分解的方法,文章提供了一种有效的算法实现思路,帮助理解数学概念在计算机科学中的应用。

I Older Brother

题意:给一个数,判断它是不是一个素数的几次方,如是,输出yes,否则,输出no。
思路:我一开始的思路是把这个数开各个次方,得到的数中只要有一个来出来的整数也是素数就OK了,但是不知道为什么一直WA在第11个样例。
后来换了思路,用质因子分解;
还有一种思路,
就是把1e5以内的素数都找出来,在看有没有一个素数的几次方为n。

Your older brother is an amateur mathematician with lots of experience. However, his memory
is very bad. He recently got interested in linear algebra over finite fields, but he does not
remember exactly which finite fields exist. For you, this is an easy question: a finite field of
order q exists if and only if q is a prime power, that is, q = p
k holds for some prime number
p and some integer k ≥ 1. Furthermore, in that case the field is unique (up to isomorphism).
The conversation with your brother went something like this:
A finite field of order q exists if and only if q is a prime power. (me)
(brother) Thanks! Just to be sure, what is a prime number?
A prime number is a number that has exactly two divisors. (me)
(brother) Right.
(brother) Remind me, what is a divisor?
Sigh. . . (me)
Never mind, I’ll write you a program. (me)
(brother) Awesome, thanks!
Input
The input consists of one integer q, satisfying 1 ≤ q ≤ 109
.
Output
Output “yes” if there exists a finite field of order q. Otherwise, output “no”.
Sample Input 1 Sample Output 1
1 no
Sample Input 2 Sample Output 2
37 yes
Sample Input 3 Sample Output 3
65536 yes

代码思路一

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 100005

int main()
{
    ios::sync_with_stdio(0);
    ll n;
    cin >> n;
    if(n == 1)
    {
        cout << "no" << endl;
        return 0;
    }
    ll x = n;
    int pos = 0;
    for(int i = 2; i <= sqrt(n); i ++)
    {
        if(x%i == 0)
        {
            while(x%i == 0)
            {
                x/=i;
            }
            pos++;
        }
        if(x == 1) break;
    }
    if(x!=1) pos++;
    if(pos == 1) cout <<"yes"<< endl;
    else cout <<"no"<< endl;
    return 0;
}
内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值