
R语言
文章平均质量分 64
TomatoSCI
TomatoSCI科研数据分析平台官方账号
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TomatoSCI——PCA(主成分分析)
2.PCA通过提取主成分,可以发现变量之间共享的变化模式,这些模式可能揭示出潜在的系统性关系,而相关性只显示变量之间直接的线性关系,无法揭示多个变量共同作用的潜在模式。在数据方面,我们把各变量看作一种平等的关系,而不是像冗余分析一样有响应变量和解释变量之分,要注意的是,这些变量都要是连续变量(图1)。3.箭头长度(颜色深浅):箭头长度和颜色深度是一致的,当一个变量的箭头越长(颜色越深),那么它在样本之间的变异的主导性就越强。图3是输出的结果文件,呈现的是各个维度的解释比例以及各变量在各维度上的载荷。原创 2025-05-05 17:15:24 · 611 阅读 · 0 评论 -
TomatoSCI分析日记—逐步回归1
图1的ABCDE是逐步加入变量的过程,理解的思路就是,逐个变量去尝试,看加上哪一个变量的AIC值最低,比如在图1A中,加入变量SD后的AIC最低,因此首先选择SD;步进法:从一个无变量的空模型开始,将每一个独立变量分别引入模型中,计算引入后模型的表现,选择对模型改进最大的变量。每次增加一个变量后,继续测试其他变量,依次引入对模型解释力最有帮助的变量,直到没有新的变量能显著提升模型的拟合度为止。对于逐步回归模型,我们主要看三个指标:(1)AIC,是一种用于比较模型优劣的准则,值越小的模型解释力越好;原创 2025-05-04 23:14:14 · 586 阅读 · 0 评论 -
TomatoSCI分析日记—数据标准化
此外,一些算法在分析过程中对数值更大的变量或数据范围大的变量分配的权重更大,导致模型偏重于某些特征(图2)。这意味着,如果将左图的Y轴尺度调整为与X轴相同的尺度,我们会发现左图的聚类结果主要基于X2的差异,因为X2的原始数据范围很大,而X1的范围较小。经过Z-score标准化处理后,不同量级的变量被缩放到相同的尺度范围,使得在分析中每个变量的权重得到平等对待。标准化后的结果保持了原有的数据趋势,“大者仍大,小者仍小”的关系没有发生变化,但图表的可读性大大增强。保持原数据的分布特征,不会扭曲数据的相对差异。原创 2025-04-27 22:20:00 · 388 阅读 · 0 评论 -
TomatoSCI分析日记——冗余分析(RDA)
RDA结合了线性相关和降维分析,通常用于两个矩阵之间的研究,通过可视化观察变量之间的关系,十分适用于生态方面的研究。原创 2025-04-26 14:33:22 · 1155 阅读 · 2 评论