【问题描述】
在一个由2k×2k(k>0)的棋盘,恰有一个方格与其它方格不同,称该方格为特殊方格。现在要用如下的L型骨牌覆盖除了特殊方格外的其他全部方格,骨牌可以任意旋转,并且任何两个骨牌不能重叠。请给出一种覆盖方法。

【问题求解】
棋盘中的方格数=2k×2k=4k,覆盖使用的L型骨牌个数=(4k-1)/3。
采用的方法是:将棋盘划分为4个大小相同的4个象限,根据特殊方格的位置(dr,dc),在中间位置放置一个合适的L型骨牌。
例如,如下图所示,特殊方格在左上角象限中,在中间放置一个覆盖其他3个象限中个一个方格的L型骨牌。

其他情况类似!
用(tr,tc)表示一个象限左上角方格的坐标,(dr,dc)是特殊方格所在的坐标,size是棋盘的行数和列数。
用二维数组board存放覆盖方案,用tile全局变量表示L型骨牌的编号(从整数1开始),board中3个相同的整数表示一个L型骨牌。

例如:

void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
if (size == 1) return;//递归出口
int t = tile++;//取一个L型骨牌,其牌号为tile
int s = size / 2;//分割棋盘
//考虑左上角象限
if (dr < tr + s&&dc < tc + s)//特殊方格在此象限中
ChessBoard(tr, tc, dr, dc, s);
else//此象限中无特殊方格
{
board[tr + s - 1][tc + s - 1] = t;//用t号L型骨牌覆盖右下角
ChessBoard(tr, tc, tr + s - 1, tc + s - 1, s);//将右下角作为特殊方格继续处理该象限
}

//考虑右上角象限
if (dr < tr + s&&dc >= tc + s)//特殊方格在此象限中
ChessBoard(tr, tc + s, dr, dc, s);
else//此象限中无特殊方格
{
board[tr + s - 1][tc + s] = t;//用t号L型骨牌覆盖左下角
ChessBoard(tr, tc + s, tr + s - 1, tc + s, s);//将左下角作为特殊方格继续处理该象限
}

//处理左下角象限
if(dr>=tr+s && dc<tc+s) //特殊方格在此象限中
ChessBoard(tr+s,tc,dr,dc,s);
else //此象限中无特殊方格
{ board[tr+s][tc+s-1]=t; //用t号L型骨牌覆盖右上角
ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
//将右上角作为特殊方格继续处理该象限
}

//考虑右下角象限
if (dr >= tr + s&&dc >= tc + s)//特殊方格在此象限中
ChessBoard(tr+s, tc + s, dr, dc, s);
else//此象限中无特殊方格
{
board[tr + s][tc + s] = t;//用t号L型骨牌覆盖左上角
ChessBoard(tr+s, tc + s, tr + s , tc + s, s);//将左上角作为特殊方格继续处理该象限
}

294

被折叠的 条评论
为什么被折叠?



