# Swordsman 优先队列

45 篇文章 0 订阅

[1] Swordsman

Problem Description
Lawson is a magic swordsman with k kinds of magic attributes v1,v2,v3,…,vk. Now Lawson is faced with n monsters and the i-th monster also has k kinds of defensive attributes ai,1,ai,2,ai,3,…,ai,k. If v1≥ai,1 and v2≥ai,2 and v3≥ai,3 and … and vk≥ai,k, Lawson can kill the i-th monster (each monster can be killed for at most one time) and get EXP from the battle, which means vj will increase bi,j for j=1,2,3,…,k.
Now we want to know how many monsters Lawson can kill at most and how much Lawson’s magic attributes can be maximized.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line has two integers n and k (1≤n≤105,1≤k≤5).
The second line has k non-negative integers (initial magic attributes) v1,v2,v3,…,vk.
For the next n lines, the i-th line contains 2k non-negative integers ai,1,ai,2,ai,3,…,ai,k,bi,1,bi,2,bi,3,…,bi,k.
It’s guaranteed that all input integers are no more than 109 and vj+∑i=1nbi,j≤109 for j=1,2,3,…,k.

It is guaranteed that the sum of all n ≤5×105.
The input data is very large so fast IO (like fread) is recommended.
Output
For each test case:
The first line has one integer which means the maximum number of monsters that can be killed by Lawson.
The second line has k integers v′1,v′2,v′3,…,v′k and the i-th integer means maximum of the i-th magic attibute.
Sample Input
1
4 3
7 1 1
5 5 2 6 3 1
24 1 1 1 2 1
0 4 1 5 1 1
6 0 1 5 3 1
Sample Output
3
23 8 4
Hint
For the sample, initial V = [7, 1, 1]
① kill monster #4 (6, 0, 1), V + [5, 3, 1] = [12, 4, 2]
② kill monster #3 (0, 4, 1), V + [5, 1, 1] = [17, 5, 3]
③ kill monster #1 (5, 5, 2), V + [6, 3, 1] = [23, 8, 4]
After three battles, Lawson are still not able to kill monster #2 (24, 1, 1)
because 23 < 24.
Source
2018 Multi-University Training Contest 7

#include<bits/stdc++.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;

namespace FastIO {
const int SIZE = 1 << 16;
char buf[SIZE], obuf[SIZE], str[60];
int bi = SIZE, bn = SIZE, opt;
while (bn) {
for (; bi < bn && buf[bi] <= ' '; bi++);
if (bi < bn) break;
bn = fread(buf, 1, SIZE, stdin);
bi = 0;
}
int sn = 0;
while (bn) {
for (; bi < bn && buf[bi] > ' '; bi++) s[sn++] = buf[bi];
if (bi < bn) break;
bn = fread(buf, 1, SIZE, stdin);
bi = 0;
}
s[sn] = 0;
return sn;
}

if (!n) return 0;
int i = 0; if (str[i] == '-') bf = -1, i++; else bf = 1;
for (x = 0; i < n; i++) x = x * 10 + str[i] - '0';
if (bf < 0) x = -x;
return 1;
}
};

const int maxn = int(1e5) + 7;

struct Tmp {
int hp, index;
bool operator <(const Tmp &tmp) const {
return hp < tmp.hp;
}
bool operator >(const Tmp &tmp) const {
return hp > tmp.hp;
}
} buf;

struct Monster {
} m[maxn];

int main() {
priority_queue<Tmp,vector<Tmp>,greater<Tmp> > que[7];
//	for (scanf("%d", &t); t; t--) {
while(t--){
//      scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= k; ++j) reads(m[i].hp[j]);
//			 scanf("%d", &m[i].hp[j]);
m[i].index = i;
}

for (int i = 1; i <= n; i++){
struct Tmp t ;
t.hp = m[i].hp[1];
t.index = i;
que[1].push(t);
//			que[1].push({m[i].hp[1], i});
}

int pre = 0, ans = 0;

while (true) {
for (int i = 1; i < k; i++) {
while (!que[i].empty() && (buf = que[i].top(), buf.hp <= AD[i])) {
int index = buf.index;
struct Tmp t ;
t.hp = m[index].hp[i + 1];
t.index = index;
que[i + 1].push(t);
//					que[i + 1].push({m[index].hp[i + 1], index});
que[i].pop();
}
}
while (!que[k].empty() && (buf = que[k].top(), buf.hp <= AD[k])) {
ans++;
int index = buf.index;
for (int i = 1; i <= k; i++) AD[i] += m[index].ad[i];
que[k].pop();
}
if (ans == pre) break;
pre = ans;
}

printf("%d\n", ans);

for (int i = 1; i <= k; i++)
printf("%d%c", AD[i], i == k ? '\n' : ' ');

for(int i=0;i<=6;i++)
{
while(!que[i].empty())que[i].pop();
}
}
return 0;
}


• 0
点赞
• 0
收藏
• 打赏
• 0
评论
07-30 403
08-11 587
03-08 779
04-23 9706
01-14 2万+
04-25 1097
03-16 846
10-13 1971
07-21 2657
05-28 1万+
08-26 5221

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。