Pytorch 深度学习实战(三)

29 篇文章 0 订阅
29 篇文章 0 订阅

Gradient Descent

# 梯度下降法

# 1. 准备数据集
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# 初始化权重
w = 1.0

# 2. 定义网络
def forward(x):
    return x * w

# 3. 构建损失函数
def loss(xs, ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y)  ** 2
    return cost / len(xs)

# 计算梯度
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)

print('Predict (Before training)', 4 ,forward(4))

# 4. 训练循环
for epoch in range(100):
    # 前向传播
    cost_val = loss(x_data, y_data)
    # 反向传播
    grad_val = gradient(x_data, y_data)
    # 更新参数
    w -= 0.01 * grad_val
    
    print('Epoch:', epoch, 'w = ', w, 'loss = ', cost_val)

print('Predict (After training)', 4, forward(4))
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习砖家

您的鼓励将是我创作的最大动力。

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值