VisionPro实战之测量多个零件内径

目录

1.案例要求

2.实现思路

1.图片类型符合,我们就不需要用图片转换工具了。我们先要找到每一个零件。

2.依据匹配获得的中心点获取所有圆

3.计算得出所测量的内径

4.编写脚本进行遍历

3.具体操作

1.我们先创建一个Block工具,方便写脚本。

2.创建CogToolBlock工具,我们在block里面操作。

​编辑3.直径/2=半径

4.打开Block巩固就里面的脚本,写脚本

4.最终实现效果

5.知识点总结

CogFindCircleTool(找圆工具)

用途

核心功能

关键参数

应用场景

使用流程

注意事项

1.案例要求

测量零件的内径(半径)

2.实现思路


我们先进行思考。

1.图片类型符合,我们就不需要用图片转换工具了。我们先要找到每一个零件。
2.依据匹配获得的中心点获取所有圆
3.计算得出所测量的内径
4.编写脚本进行遍历

3.具体操作


1.我们先创建一个Block工具,方便写脚本。

创建模板匹配工具

设置好要训练的图像,因为我们要找的是零件内径,而且它特征也明显,所以我们直接匹配他就可以

创建定位工具

2.创建CogToolBlock工具,我们在block里面操作。

创建一个找圆工具,之后再脚本里便利,这里我们只需要把图片传入就可以

<think>好的,我需要帮助用户了解如何使用VisionPro软件测量多个零件内径。根据用户提供的引用内容,我需要整理出具体的步骤和方法,并确保回答结构清晰、符合格式要求。 首先,引用[2]提到了多目标检测和测量多个零件半径的方法,其中使用了PMA的中心传给找工具,并配置了卡尺数量、投影长度等参数。这可能适用于内径测量。引用[1]提到测量距离和显示结果,引用[3]涉及孔位数量统计,可能与定位零件相关。 接下来,我需要将这些信息整合成一个分步骤的教程。步骤应包括图像预处理、定位零件、配置找工具、批量处理多个零件、数据输出和验证优化。同时,要注意使用正确的LaTeX格式,比如内径公式使用$D=2r$。 然后,生成相关问题,确保问题与教程内容相关,并且覆盖用户可能感兴趣的方面,如参数影响、批量处理技巧、结果验证等。 最后,检查引用标注是否正确,确保每个引用来源在回答中有对应的标识,并按照用户要求的结构呈现内容。</think>### VisionPro零件内径测量方法教程 在VisionPro测量多个零件内径需要结合图像处理工具和脚本控制,以下是具体步骤: #### 1. 图像预处理与定位 - 使用**PMA(Pattern Matching Algorithm)**定位零件基准点[^2] - 通过$H_{transform} = T_{affine} \cdot R_{rotation}$建立坐标系变换关系 - 用**Blob分析工具**分割零件区域,公式:$A_{threshold} = \sum_{i=0}^{n} (I(x,y) > T_{value})$[^1] #### 2. 内径测量配置 ```python # 典型找工具参数设置(引用自) CogFindCircleTool.Polarity = "DarkToLight" CogFindCircleTool.NumCalipers = 20 # 卡尺数量 CogFindCircleTool.ProjectionLength = 15 # 投影长度 CogFindCircleTool.ContrastThreshold = 5 # 对比度阈值 ``` #### 3. 多目标批量处理 1. 创建零件位置队列:$Q = \{ P_1(x,y), P_2(x,y)...P_n(x,y) \}$[^3] 2. 循环调用找工具时动态更新ROI区域 3. 使用**最佳拟合**算法:$r = \frac{1}{N}\sum_{i=1}^{N}\sqrt{(x_i - x_c)^2 + (y_i - y_c)^2}$ #### 4. 数据输出与显示 - 测量结果存储格式:$D=2r$(内径=2倍半径) - 通过C#/VB.NET脚本绑定数据到界面控件[^1] - 异常值过滤条件:$|r_{current} - r_{average}| > 3\sigma$ #### 5. 验证与优化 - 实时模式调试时观察边缘检测效果 - 调整卡尺角度补偿椭变形:$\theta = \arctan(\frac{\Delta y}{\Delta x})$ - 添加重复性测试:$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(r_i - \mu)^2}$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值