分类算法
目标值:类别
1、sklearn转换器和预估器
2、KNN算法
3、模型选择与调优
4、朴素贝叶斯算法
5、决策树
6、随机森林
3.1 sklearn转换器和估计器
转换器
估计器(estimator)
3.1.1 转换器 - 特征工程的父类
1 实例化 (实例化的是一个转换器类(Transformer))
2 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)
标准化:
(x - mean) / std
fit_transform()
fit() 计算 每一列的平均值、标准差
transform() (x - mean) / std进行最终的转换
3.1.2 估计器(sklearn机器学习算法的实现)
估计器(estimator)
1 实例化一个estimator
2 estimator.fit(x_train, y_train) 计算
—— 调用完毕,模型生成
3 模型评估:
1)直接比对真实值和预测值
y_predict = estimator.predict(x_test)
y_test == y_predict
2)计算准确率
accuracy = estimator.score(x_test, y_test)
3.2 K-近邻算法
3.2.1 什么是K-近邻算法
KNN核心思想:
你的“邻居”来推断出你的类别
1 K-近邻算法(KNN)原理
k = 1
容易受到异常点的影响
如何确定谁是邻居?
计算距离:
距离公式
欧氏距

本文介绍了机器学习中的分类算法,包括knn、朴素贝叶斯、决策树和随机森林。详细讲解了knn算法的K值选择、距离公式、案例分析,朴素贝叶斯的基础概率和相互独立假设,决策树的信息增益和过拟合问题,以及随机森林的训练集和特征随机性。每个算法都配合了实际案例和优缺点总结。
最低0.47元/天 解锁文章
800

被折叠的 条评论
为什么被折叠?



